Development and Testing of a Foam-Gel Technology to Improve Conformance of the Rangely CO2 Flood

1999 ◽  
Vol 2 (01) ◽  
pp. 4-13 ◽  
Author(s):  
F. Friedmann ◽  
T.L. Hughes ◽  
M.E. Smith ◽  
G.P. Hild ◽  
A. Wilson ◽  
...  

Summary Thirty-six thousand four hundred barrels of CO2 gelled foam were successfully placed via an injector well into the Rangely Weber Sand Unit in Colorado. The treatment objectives were (1) to improve volumetric conformance in this CO2 flood by reducing excessive CO2 breakthrough through fractures, and (2) to increase oil recovery from the associated producers. Local reservoir characteristics indicate the need for a large-volume treatment to achieve these goals. The required treatment volume is beyond the economic limits of standard gel systems. Foam gel technology is one way to economically achieve in-depth conformance improvement at Rangely by replacing 60 to 80% of the liquid phase by the less expensive CO2 phase. A gelled foam system was specifically designed for application to Rangely conformance problems. The field-tested surfactant/gel system was designed according to the following criteria:to produce strong and robust gelled foams under the harsh pH conditions of a CO2 flood,to provide enough gelation delay to achieve the injection of a large foam volume with manageable injectivity reduction, andto considerably reduce the unit cost of the treatment fluid relative to standard non-foamed gel systems. This paper describes the methodology used to design and test the optimum gelled foam system for Rangely. Laboratory results are presented to support the chemicals system selection, including gelation kinetics experiments, surfactant selection, and corefloods with supercritical CO2 at field conditions. The candidate well selection process is described, including injection profile surveys, offset well response, and bypassed reserves calculation. Data taken during the injection phase of the program, including injectivity history and on-site quality control monitoring of the chemical system behavior, are given. Finally a preliminary assessment of the impact of the treatment on CO2 cycling rates and incremental oil production is presented. Introduction Oil recovery efficiency in CO2 floods can be substantially reduced if premature CO2 breakthrough occurs at offset producers through fractures. Injector polymer gel treatments have successfully improved volumetric sweep in some CO2 field projects.1 CO2 diversion from the fracture network to the adjacent matrix rock resulted in the recovery of additional oil reserves. However, the volume of injector polymer gel treatments can be limited by cost, which in turn limits the potential impact on reservoir sweep. If there is significant crossflow between the thief zone and the remainder of the reservoir, larger treatment volumes impact sweep over a large volume of the reservoir, thereby improving incremental oil recovery.2 Gelled foam technology is one way to economically increase the treatment volume when reservoir characteristics dictate the need for in-depth conformance improvement. Fluid costs can be substantially reduced if 60 to 80% of the expensive aqueous phase can be replaced by a cheap, readily available phase such as CO2 The major difference between gelled foams and aqueous foams is that, after some time, the liquid phase of the gelled foam gels, thereby greatly enhancing the mechanical stability of the foam lamellae network. Ideally the liquid phase of the gelled foam system will not gel during the injection phase. Thus the system behaves like a foam during injection, and, after gelling, it behaves like a gel by forming a flow barrier. Thus the treatment volume can be cost-effectively increased if the foam can be generated/propagated in the fracture network, the gelation of the liquid phase of the foam can be delayed, and the gelled foam can provide sufficient flow resistance to divert reservoir drive fluids. An additional benefit of CO2 entrained in the gel volume is that the system will be less dense than "traditional" gel treatments. This reduced density will make it easier to place the gelled foam where the less dense CO2 travels in the reservoir, i.e., in the upper regions of fractures or thief zones. Mechanistic studies of gelled foam for waterflood diversion have been conducted in etched glass micromodels.3,4 It was found that, below a critical pressure gradient, gelled foam barriers efficiently render porous media impermeable to gas or liquid flow. Above the critical pressure gradient, the gelled lenses rupture, creating a conductive path for the injected fluid. Although the gelled foam lamellae rupture, some of the gel debris remains in pore throats and continues to provide a resistance to flow. The critical pressure gradient depends on foam quality, gel strength, and rock permeability. Based on these preliminary results, a study was undertaken to develop a gelled foam conformance control system for field application. Rangely field was selected as the first target to test this technology. A miscible CO2 flood was initiated in the Rangely Weber Sand Unit in 1986. The field-wide performance of the CO2 project has been successful. However, excessive CO2 cycling through fractures has resulted in inadequate volumetric sweep in some areas of the field. Large-volume injector gel treatments (10,000 to 15,000 bbl) have been conducted, which were successful at improving CO2 utilization.5 However, the magnitude of the CO2 breakthrough problem in specific field areas justifies the placement of even larger slugs to significantly impact volumetric sweep. The successful implementation of a large-volume gelled foam treatment could result in reduced operating costs (OPEX) and increased ultimate recovery. In this paper we report results on the laboratory development of a CO2 gelled foam conformance control system and its performance in a field trial conducted in one Rangely field injector well. Field and Well Selection The Rangely field is located in Rio Blanco County, Colorado, U.S.A. It is the largest field in the Rocky Mountain region in terms of daily and cumulative oil production.

1999 ◽  
Vol 2 (01) ◽  
pp. 14-24 ◽  
Author(s):  
T.L. Hughes ◽  
F. Friedmann ◽  
D. Johnson ◽  
G.P. Hild ◽  
A. Wilson ◽  
...  

Summary Large-volume foam-gel treatments can provide a cost-effective method to achieve in-depth conformance improvement in fractured reservoirs. The applicability and cost effectiveness of the approach depends on the availability of a cheap source of gas, the efficiency with which the foam can be placed into the high permeability thief zone(s), and the effectiveness of the gelled foam barrier in diverting reservoir drive fluids to improve oil recovery. This paper reviews progress in the application of large-volume CO2-foam-gel treatments to improve conformance in the Rangely Weber Sand Unit (RWSU), Colorado. During the period November 1996-November 1997 three large-volume foam-gel treatments were successfully placed into the Rangely reservoir. The first 36?400 bbl treatment, implemented November 1996, increased the pattern oil rate from 260 barrels of oil per day (BOPD) in March 1997 to ±330 BOPD in August 1998; a conservative estimate of incremental oil recovery is ±40?000 bbl by the end of August 1998. The second 43?450 bbl treatment, implemented August-September 1997, increased the pattern oil rate from ±430 BOPD in March 1998 to ±470 BOPD in August 1998; post-treatment, the pattern oil rate data is described by a linear regression with slope, +56 BOPD but it is too early to make a firm estimate of incremental oil recovery. The third 44?700 bbl treatment, implemented October-November 1997, increased the pattern oil rate from ±330 BOPD in May 1998 to ±375 BOPD in July-August 1998; a linear regression of the post-treatment data gives a positive slope but again it is too early to estimate incremental oil recovery. Some general features in the pattern production response given by the three foam-gel treatments were observed. First, each of the treatments induces a stabilization in the pattern oil rate which, for treatments I and II, is accompanied by a decrease in the pattern gas rate. Second, the first positive oil rate response given by each of the treatments is observed 6-8 months after treatment execution and is dominated by the response at producer wells lying to the west/southwest and/or east/southeast of the treated injector well. For a given treatment volume, the cost of a foam-gel treatment at Rangely is 40%-50% below the average cost of polymer gel treatments. As the foam is injected at a higher rate, the total pump time required for a 40?000 bbl foam-gel treatment is similar to a 20?000 bbl polymer gel treatment. Early during pumping treatments II and III, we attempted to increase the CO2 content of the foam from 80 to 85 vol?%; this resulted in a wellhead pressure which was too close to the CO2 pressure limit necessitating a decrease in foam injection rate. Thus, in optimizing foam-gel treatment cost, there is a balance between maximizing the content of the inexpensive CO2 phase and minimizing total pump time. For Treatments II and III, the cost of the liquid phase formulation was reduced by decreasing the concentrations of surfactant and buffer. The implementation and evaluation of three large-volume foam-gel treatments at Rangely indicates that the foam-gel approach provides a cost-effective method to achieve in-depth conformance improvement in fractured reservoirs. Introduction A recent survey1 indicated that the proportion of U.S. EOR production recovered by gas injection has increased from 18% to 41% during the period 1986-1996. A major contribution to this trend has been the strong increase in the number of miscible carbon dioxide (CO2) projects which now account for > 70% of the total number of ongoing gas injection projects in the U.S. The Rangely CO2 flood began in 1986; currently, there are 372 active producer wells and 300 active injector wells, 259 of which are injecting CO2 using the water-alternating-gas (WAG) process. In the application of gas injection to heterogeneous reservoirs, oil recovery efficiency can be limited by poor conformance as an increasing proportion of the injected gas flows through higher permeability thief zones and/or fractures. The importance of conformance improvement has long been recognized at Rangely. The main problem being addressed is poor CO2 conformance due to preferential flow through the natural fracture network leading to premature gas breakthrough at the associated producers. This process increases operating costs and reduces oil recovery. The objective of the Rangely Conformance Improvement Team (CIT) is to improve conformance in order to reduce operating costs and increase the oil recovery to >1 billion bbl (>50% OOIP) compared to the current 815 million bbl (43% OOIP). A number of mechanical methods and chemical treatments have been employed to improve conformance at Rangely. While dual injection strings and selective injection equipment (SIE) have been used for improved injection profile control, chemical treatments using polymer gels2 and CO2 foam3 have been used to improve volumetric sweep efficiency and oil recovery. During the period 1994-1997, 49 injector wells were treated by placing a MARCIT™ gel4 into the fracture network.5 While these treatments have improved local sweep efficiency and oil recovery, economics limit the maximum treatment volume per injector well to 15?000-20?000 bbl. Certain regions of the Rangely reservoir require considerably larger treatment volumes to reduce the permeability of a larger volume of the fracture network and improve conformance in a larger volume of the well pattern.


2018 ◽  
Vol 32 (3) ◽  
pp. 2908-2915 ◽  
Author(s):  
Mingwei Zhao ◽  
Haonan He ◽  
Caili Dai ◽  
Yongpeng Sun ◽  
Yanchao Fang ◽  
...  

2001 ◽  
Vol 4 (06) ◽  
pp. 455-466 ◽  
Author(s):  
A. Graue ◽  
T. Bognø ◽  
B.A. Baldwin ◽  
E.A. Spinler

Summary Iterative comparison between experimental work and numerical simulations has been used to predict oil-recovery mechanisms in fractured chalk as a function of wettability. Selective and reproducible alteration of wettability by aging in crude oil at an elevated temperature produced chalk blocks that were strongly water-wet and moderately water-wet, but with identical mineralogy and pore geometry. Large scale, nuclear-tracer, 2D-imaging experiments monitored the waterflooding of these blocks of chalk, first whole, then fractured. This data provided in-situ fluid saturations for validating numerical simulations and evaluating capillary pressure- and relative permeability-input data used in the simulations. Capillary pressure and relative permeabilities at each wettability condition were measured experimentally and used as input for the simulations. Optimization of either Pc-data or kr-curves gave indications of the validity of these input data. History matching both the production profile and the in-situ saturation distribution development gave higher confidence in the simulations than matching production profiles only. Introduction Laboratory waterflood experiments, with larger blocks of fractured chalk where the advancing waterfront has been imaged by a nuclear tracer technique, showed that changing the wettability conditions from strongly water-wet to moderately water-wet had minor impact on the the oil-production profiles.1–3 The in-situ saturation development, however, was significantly different, indicating differences in oil-recovery mechanisms.4 The main objective for the current experiments was to determine the oil-recovery mechanisms at different wettability conditions. We have reported earlier on a technique that reproducibly alters wettability in outcrop chalk by aging the rock material in stock-tank crude oil at an elevated temperature for a selected period of time.5 After applying this aging technique to several blocks of chalk, we imaged waterfloods on blocks of outcrop chalk at different wettability conditions, first as a whole block, then when the blocks were fractured and reassembled. Earlier work reported experiments using an embedded fracture network,4,6,7 while this work also studied an interconnected fracture network. A secondary objective of these experiments was to validate a full-field numerical simulator for prediction of the oil production and the in-situ saturation dynamics for the waterfloods. In this process, the validity of the experimentally measured capillary pressure and relative permeability data, used as input for the simulator, has been tested at strongly water-wet and moderately water-wet conditions. Optimization of either Pc data or kr curves for the chalk matrix in the numerical simulations of the whole blocks at different wettabilities gave indications of the data's validity. History matching both the production profile and the in-situ saturation distribution development gave higher confidence in the simulations of the fractured blocks, in which only the fracture representation was a variable. Experimental Rock Material and Preparation. Two chalk blocks, CHP8 and CHP9, approximately 20×12×5 cm thick, were obtained from large pieces of Rørdal outcrop chalk from the Portland quarry near Ålborg, Denmark. The blocks were cut to size with a band saw and used without cleaning. Local air permeability was measured at each intersection of a 1×1-cm grid on both sides of the blocks with a minipermeameter. The measurements indicated homogeneous blocks on a centimeter scale. This chalk material had never been contacted by oil and was strongly water-wet. The blocks were dried in a 90°C oven for 3 days. End pieces were mounted on each block, and the whole assembly was epoxy coated. Each end piece contained three fittings so that entering and exiting fluids were evenly distributed with respect to height. The blocks were vacuum evacuated and saturated with brine containing 5 wt% NaCl+3.8 wt% CaCl2. Fluid data are found in Table 1. Porosity was determined from weight measurements, and the permeability was measured across the epoxy-coated blocks, at 2×10–3 µm2 and 4×10–3 µm2, for CHP8 and CHP9, respectively (see block data in Table 2). Immobile water saturations of 27 to 35% pore volume (PV) were established for both blocks by oilflooding. To obtain uniform initial water saturation, Swi, oil was injected alternately at both ends. Oilfloods of the epoxy-coated block, CHP8, were carried out with stock-tank crude oil in a heated pressure vessel at 90°C with a maximum differential pressure of 135 kPa/cm. CHP9 was oilflooded with decane at room temperature. Wettability Alteration. Selective and reproducible alteration of wettability, by aging in crude oil at elevated temperatures, produced a moderately water-wet chalk block, CHP8, with similar mineralogy and pore geometry to the untreated strongly water-wet chalk block CHP9. Block CHP8 was aged in crude oil at 90°C for 83 days at an immobile water saturation of 28% PV. A North Sea crude oil, filtered at 90°C through a chalk core, was used to oilflood the block and to determine the aging process. Two twin samples drilled from the same chunk of chalk as the cut block were treated similar to the block. An Amott-Harvey test was performed on these samples to indicate the wettability conditions after aging.8 After the waterfloods were terminated, four core plugs were drilled out of each block, and wettability measurements were conducted with the Amott-Harvey test. Because of possible wax problems with the North Sea crude oil used for aging, decane was used as the oil phase during the waterfloods, which were performed at room temperature. After the aging was completed for CHP8, the crude oil was flushed out with decahydronaphthalene (decalin), which again was flushed out with n-decane, all at 90°C. Decalin was used as a buffer between the decane and the crude oil to avoid asphalthene precipitation, which may occur when decane contacts the crude oil.


2015 ◽  
Vol 733 ◽  
pp. 43-46
Author(s):  
Jiang Min Zhao ◽  
Tian Ge Li

In this paper, several aspects of the improvement of the oil recovery were analyzed theoretically based on the mechanism that equi-fluidity enhances the pressure gradient. These aspects include the increase of the flow rate and the recovery rate, of the swept volume, and of the oil displacement efficiency. Also, based on the actual situation, the author designed the oil displacement method with gathered energy equi-fluidity, realizing the expectation of enhancing oil recovery with multi-slug and equi-fluidity oil displacement method.


2018 ◽  
Vol 2 (1) ◽  
pp. 32
Author(s):  
Mia Ferian Helmy

Gas lift is one of the artificial lift method that has mechanism to decrease the flowing pressure gradient in the pipe or relieving the fluid column inside the tubing by injecting amount of gas into the annulus between casing and tubing. The volume of  injected gas was inversely proportional to decreasing of  flowing  pressure gradient, the more volume of gas injected the smaller the pressure gradient. Increasing flowrate is expected by decreasing pressure gradient, but it does not always obtained when the well is in optimum condition. The increasing of flow rate will not occured even though the volume of injected gas is abundant. Therefore, the precisely design of gas lift included amount of cycle, gas injection volume and oil recovery estimation is needed. At the begining well AB-1 using artificial lift method that was continuos gas lift with PI value assumption about 0.5 STB/D/psi. Along with decreasing of production flow rate dan availability of the gas injection in brownfield, so this well must be analyze to determined the appropriate production method under current well condition. There are two types of gas lift method, continuous and intermittent gas lift. Each type of gas lift has different optimal condition to increase the production rate. The optimum conditions of continuous gaslift are high productivity 0.5 STB/D/psi and minimum production rate 100 BFPD. Otherwise, the intermittent gas lift has limitations PI and production rate which is lower than continuous gas lift.The results of the analysis are Well AB-1 has production rate gain amount 20.75 BFPD from 23 BFPD became 43.75 BFPD with injected gas volume 200 MSCFPD and total cycle 13 cycle/day. This intermittent gas lift design affected gas injection volume efficiency amount 32%.


SPE Journal ◽  
2020 ◽  
Author(s):  
Xindi Sun ◽  
Baojun Bai ◽  
Ali Khayoon Alhuraishawy ◽  
Daoyi Zhu

Summary With the demand for conformance control in carbon dioxide (CO2) flooding fields, hydrolyzed polyacrylamide-chromium [HPAM-Cr (III)] polymer gel has been applied in fields for CO2 conformance control. However, the field application results are mixed with success and failure. This paper is intended to understand the HPAM-Cr (III) polymer gel plugging performance in CO2 flooding reservoirs through laboratory experiments and numerical analysis. We conducted core flooding tests to understand how the cycles of CO2 and water affect the HPAM-Cr (III) polymer gel plugging efficiency to CO2 and water during a water-alternating-gas (WAG) process. Berea Sandstone cores with the permeability range of 107 to 1225 md were used to evaluate the plugging performance in terms of residual resistance factor and breakthrough pressure, which is the minimum pressure required for CO2 to enter the gel-treated cores.We compared the pressure gradient from the near-wellbore to far-field with the gel breakthrough pressure, from which we analyzed under which conditions the gel treatment could be more successful. Results show that HPAM-Cr (III) polymer gel has higher breakthrough pressure in the low-permeability cores. The polymer gel can reduce the permeability to water much more than that to CO2. The disproportionate permeability reduction performance was more prominent in low-permeability cores than in high-permeability cores. The gel resistance to both CO2 and brine significantly decreased in later cycles. In high-permeability cores, the gel resistance to CO2 became negligible only after two cycles of water and CO2 injection. Because of the significant reduction of pressure gradient from near-wellbore to far-field in a radial flow condition and the dependence of breakthrough pressure on permeability and polymer concentration, we examined hypothetical reservoirs with no fractures, in which impermeable barriers separated high- and low-permeability zones and in which the gel was only placed in the high-permeability zone. We considered two scenarios: CO2 breaking through the gel and no CO2 breakthrough. No breakthrough represents the best condition in which the gel has no direct contact and can be stable in reservoirs for long. In contrast, the breakthrough scenario will result in the gel’s significant degradation and dehydration resulting from CO2 flowing through the gel, which will cause the gel treatment to fail.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Imran Akbar ◽  
Hongtao Zhou ◽  
Wei Liu ◽  
Muhammad Usman Tahir ◽  
Asadullah Memon ◽  
...  

In the petroleum industry, the researchers have developed a new technique called enhanced oil recovery to recover the remaining oil in reservoirs. Some reservoirs are very complex and require advanced enhanced oil recovery (EOR) techniques containing new materials and additives in order to produce maximum oil in economic and environmental friendly manners. In this work, the effects of nanosuspensions (KY-200) and polymer gel HPAM (854) on oil recovery and water cut were studied in the view of EOR techniques and their results were compared. The mechanism of nanosuspensions transportation through the sand pack was also discussed. The adopted methodology involved the preparation of gel, viscosity test, and core flooding experiments. The optimum concentration of nanosuspensions after viscosity tests was used for displacement experiments and 3 wt % concentration of nanosuspensions amplified the oil recovery. In addition, high concentration leads to more agglomeration; thus, high core plugging takes place and diverts the fluid flow towards unswept zones to push more oil to produce and decrease the water cut. Experimental results indicate that nanosuspensions have the ability to plug the thief zones of water channeling and can divert the fluid flow towards unswept zones to recover the remaining oil from the reservoir excessively rather than the normal polymer gel flooding. The injection pressure was observed higher during nanosuspension injection than polymer gel injection. The oil recovery was achieved by about 41.04% from nanosuspensions, that is, 14.09% higher than polymer gel. Further investigations are required in the field of nanoparticles applications in enhanced oil recovery to meet the world's energy demands.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. O23-O35 ◽  
Author(s):  
Steven R. Pride ◽  
Eirik G. Flekkøy ◽  
Olav Aursjø

The pore-scale effects of seismic stimulation on two-phase flow are modeled numerically in random 2D grain-pack geometries. Seismic stimulation aims to enhance oil production by sending seismic waves across a reservoir to liberate immobile patches of oil. For seismic amplitudes above a well-defined (analytically expressed) dimensionless criterion, the force perturbation associated with the waves indeed can liberate oil trapped on capillary barriers and get it flowing again under the background pressure gradient. Subsequent coalescence of the freed oil droplets acts to enhance oil movement further because longer bubbles overcome capillary barriers more efficiently than shorter bubbles do. Poroelasticity theory defines the effective force that a seismic wave adds to the background fluid-pressure gradient. The lattice-Boltzmann model in two dimensions is used to perform pore-scale numerical simulations. Dimensionless numbers (groups of material and force parameters) involved in seismic stimulation were defined carefully so that numerical simulations could be applied to field-scale conditions. Using defined analytical criteria, there is a significant range of reservoir conditions over which seismic stimulation can be expected to enhance oil production.


Sign in / Sign up

Export Citation Format

Share Document