Dimensions and Degree of Containment of Waterflood-Induced Fractures from Pressure Transient Analysis

2005 ◽  
Vol 8 (05) ◽  
pp. 377-387 ◽  
Author(s):  
Paul J. van den Hoek

Summary It is well established within the industry that injection of (produced)water almost always takes place under fracturing conditions. Particularly when large volumes of very contaminated water are injected—either for voidage replacement or disposal—large fractures may be induced over time. This paper aims to provide a methodology for injection-falloff (IFO) test analysis of fractured (produced) water-injection wells. Some essential elements of IFO for fractured water injectors include the closing fracture, (early)transient elliptical reservoir-fluid flow, finite fracture conductivity, and fracture face skin. An exact semianalytical solution is presented to the fully transient elliptical fluid-flow equation around a closing fracture with finite conductivity, fracture face skin, and multiple mobility zones in the reservoir surrounding the fracture. This solution also captures the case that during closure, the fracture is generally shrinking from adjacent geological layers under higher in-situ stress. Based on this solution, type curves of the dimensionless bottomhole pressure as a function of dimensionless time are provided, covering both the period during fracture closure/shrinkage and the period after fracture closure. The shape of these type curves is studied as a function of the different relevant parameters, in particular the fracture compliance, the height of in-situ stress contrasts, fracture face skin, fracture closure time, and injection period. It is shown how the fracture length and height and the degree of fracture containment (in combination with the heights of the stress contrasts) can be derived from these types of curves. It is also demonstrated that the analyses based on the storage flow and linear formation flow regimes need to be integrated into one analysis method to obtain consistent results. Finally, the concepts developed in this paper are applied to a number of field examples, in which the dimensions and degree of containment of the induced fractures are derived from the analysis of the IFO data. Introduction IFO test analysis offers one of the cheapest ways to determine the dimensions of induced fractures. Unfortunately, hardly any work has been carried out to date to provide a methodology for interpreting the pressure-transient data of fractured water-injection wells. This contrasts with the vast amount of work that has been carried out in the area of pressure-transient analysis for wells with propped fractures. Both pressure-transient tests during hydraulic fracture stimulation (called"minifrac tests"; see Ref. 1) and pressure-transient tests during production after stimulation (i.e., buildup tests; see Refs. 2 through 5) have been studied extensively. The theories as developed in Refs. 1 through 5 by now are well-accepted "textbook" methodologies. This paper deals with the subject of pressure-falloff analysis on fractured water-injection wells. In this area, the situation is entirely different from the one above in the sense that until recently, there existed no practical methodology dedicated to pressure-falloff analysis on fractured water injectors. The very limited interest in falloff-test analysis on fractured water injectors may well be related to the fact that historically, most operators have been unaware that their water injectors are fractured. Only in recent years has this situation started to change. Unfortunately, one of the consequences of the lack of a dedicated method of analysis is that falloff tests on injectors are generally interpreted in the wrong way, even if one realizes that they are fractured. Typically, such interpretations lead to wellbore-storage coefficients that can be up to orders of magnitude too high, and to fracture lengths based only on analysis of the linear formation flow period (see Ref. 10). The objective of our study is to fill the gap as described above (i.e., to provide a dedicated interpretation methodology for falloff tests on fractured water injectors). In a recent paper, we presented a novel interpretation methodology for falloff tests on fractured water injectors. This methodology is based on exact 2D solutions to the problem of pressure falloff around fractured water injectors for different boundary conditions. The most important stepforward of Ref. 6 is that it allows the determination of fracture length from a consistent combined analysis of the storage and linear-to-pseudo radial formation flow periods, and of fracture height from a consistent combined analysis of the storage and pseudoradial flow periods. Thus, uncertainties in the determination of fracture dimensions from falloff-test analysis are reduced. In the course of analyzing a variety of field cases, we found, based on the signature of field falloff-test data, that in many cases, the induced fractures must have penetrated into adjacent higher-stress zones. Therefore, the methodology as developed in Ref. 6 was extended to cater to this effect, with the objective being to enable derivation of local in-situ stress contrasts from falloff-test interpretation. This extension forms the main subject of the current paper. The paper is organized as follows. The next section presents the pressure-transient solution for a closing and shrinking water-injection fracture, including a brief recap of the main concepts presented in Ref. 6. The third section presents in some detail the shape of the pressure-transient type curves for a closing/shrinking fracture as a function of the different relevant parameters, such as the fracture compliance and the height of in-situ stress contrasts. Subsequently, this method is applied to four field examples. Finally, the last section presents our conclusions.

2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Sherif M. Kholy ◽  
Ahmed G. Almetwally ◽  
Ibrahim M. Mohamed ◽  
Mehdi Loloi ◽  
Ahmed Abou-Sayed ◽  
...  

Underground injection of slurry in cycles with shut-in periods allows fracture closure and pressure dissipation which in turn prevents pressure accumulation and injection pressure increase from batch to batch. However, in many cases, the accumulation of solids on the fracture faces slows down the leak off which can delay the fracture closure up to several days. The objective in this study is to develop a new predictive method to monitor the stress increment evolution when well shut-in time between injection batches is not sufficient to allow fracture closure. The new technique predicts the fracture closure pressure from the instantaneous shut-in pressure (ISIP) and the injection formation petrophysical/mechanical properties including porosity, permeability, overburden stress, formation pore pressure, Young's modulus, and Poisson's ratio. Actual injection pressure data from a biosolids injector have been used to validate the new predictive technique. During the early well life, the match between the predicted fracture closure pressure values and those obtained from the G-function analysis was excellent, with an absolute error of less than 1%. In later injection batches, the predicted stress increment profile shows a clear trend consistent with the mechanisms of slurry injection and stress shadow analysis. Furthermore, the work shows that the injection operational parameters such as injection flow rate, injected volume per batch, and the volumetric solids concentration have strong impact on the predicted maximum disposal capacity which is reached when the injection zone in situ stress equalizes the upper barrier stress.


2014 ◽  
Vol 51 (11-12) ◽  
pp. 2116-2122 ◽  
Author(s):  
V.V. Shelukhin ◽  
V.A. Baikov ◽  
S.V. Golovin ◽  
A.Y. Davletbaev ◽  
V.N. Starovoitov

2021 ◽  
Author(s):  
Jun Wu ◽  
Iraj Ershaghi

Abstract Castillo1 suggested the use of the G-Function plot based on the work of Nolte2. It has been a standard practice in the fracturing community to estimate the fracture closing pressure from a tangent to the G*dp/dg plot. In this analysis technique, the assumption is that a fracture has already developed under the high-pressure fracturing fluid. Then when the pumping is relaxed, one can estimate the fracture closing pressure. In many California waterfloods, the issue of maximum allowable injection gradient has been debated. Various solutions have been proposed to calculate a safe injection gradient. One method that has been promoted is the application of the G-function plot. In this paper, we maintain that this application can be misleading using the prescribed cartesian G function plots. We present the results of an extensive research study for analyzing pressure fall-off data using the G-Plot function. We studied a reappraisal of the G function plot using waterflood conditions where no prior fractures had formed, and no fracture closing pressure was meaningful or applicable. We show from analysis of generated data, using both numerical reservoir modeling and analytical derivations for a radial flow system, that fall-off tests analyzed using the cartesian G function can generate false indications of fracture closing where in fact, the entire injection has been based on radial flow homogeneous injection systems. We also studied systems with a pre-existing fracture before injection. We show that if such a reservoir system is subjected to injection and fall-off tests, again, one may compute a false indication of the irrelevant fracture closure pressure. We discuss how the cartesian scale used for the G function plot can be misleading for the analysis of fall-off test data.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Yongxiang Zheng ◽  
Jianjun Liu ◽  
Bohu Zhang

The in situ stress has an important influence on fracture propagation and fault stability in deep formation. However, the development of oil and gas resources can only be determined according to the existing state of in situ stress in most cases. It is passive acceptance of existing in situ stress. Unfortunately, in some cases, the in situ stress conditions are not conducive to resource development. If the in situ stress can be interfered in some ways, the stress can be adjusted to a more favorable state. In order to explore the method of artificial interference, this paper established the calculation method of the in situ stress around the cracks based on fracture mechanics at first and obtained the redistribution law of the in situ stress. Based on the obtained redistribution law, attempts were made to interfere with the surrounding in situ stress by water injection in the preexisting crack. On this basis, the artificial stress intervention was applied. The results show that artificial interference of stress can effectively be achieved by water injection in the fracture. And changing the fluid pressure in the crack is the most effective way. By stress artificial intervention, critical pressure for water channelling in fractured reservoirs, directional propagation of cracks in hydraulic fracturing, and stress adjustment on the structural plane were applied. This study provides guidance for artificial stress intervention in the exploitation of the underground resource.


2020 ◽  
Vol 38 (5) ◽  
pp. 1387-1408
Author(s):  
Yang Chen ◽  
Dameng Liu ◽  
Yidong Cai ◽  
Jingjie Yao

Hydraulic fracturing has been widely used in low permeability coalbed methane reservoirs to enhance gas production. To better evaluate the hydraulic fracturing curve and its effect on gas productivity, geological and engineering data of 265 development coalbed methane wells and 14 appraisal coalbed methane wells in the Zhengzhuang block were investigated. Based on the regional geologic research and statistical analysis, the microseismic monitoring results, in-situ stress parameters, and gas productivity were synthetically evaluated. The results show that hydraulic fracturing curves can be divided into four types (descending type, stable type, wavy type, and ascending type) according to the fracturing pressure and fracture morphology, and the distributions of different type curves have direct relationship with geological structure. The vertical in-situ stress is greater than the closure stress in the Zhengzhuang block, but there is anomaly in the aggregation areas of the wavy and ascending fracturing curves, which is the main reason for the development of multi-directional propagated fractures. The fracture azimuth is consistent with the regional maximum principle in-situ stress direction (NE–NEE direction). Furthermore, the 265 fracturing curves indicate that the coalbed methane wells owned descending, and stable-type fracturing curves possibly have better fracturing effect considering the propagation pressure gradient (FP) and instantaneous shut-in pressure (PISI). Two fracturing-productivity patterns are summarized according to 61 continuous production wells with different fracturing type and their plane distribution, which indicates that the fracturing effect of different fracturing curve follows the pattern: descending type > stable type > wavy type > ascending type.


2010 ◽  
Vol 29-32 ◽  
pp. 1369-1373
Author(s):  
Wan Chun Zhao ◽  
Ting Ting Wang ◽  
Guo Shuai Ju

The mechanical distribution of refracturing rock around well is Considered, the induced stress of vertical fractured well changes in pore pressure is first to establish, taking into account the fluid compressibility, the introduction of the initial artificial fracture fluid factor, an evolution model of in-situ stress is built up for initial fracture. Consider the impact of temperature on the reservoir rock, an evolution model of the temperature induced stress model is built up, Combined with in-situ stress field, an evolution model of Mechanical determination conditions of re-fracture well create new fracture is built up. Calculation of a block of Jilin Oilfield injection wells by the three effects of stress around an oil well, the theoretical calculation results are consistent with the field.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jia Zhang ◽  
Shiqing Cheng ◽  
Shiying Di ◽  
Zhanwu Gao ◽  
Rui Yang ◽  
...  

Formation damage usually occurs in near-well regions for injection wells completed in offshore oilfields under the development of line drive patterns. However, current works on characterizing the damage by well test analysis were basically focused on using single-phase analogy to solve two-phase flow issues, resulting in errors on the diagnosis and interpretation of transient pressure data. In this paper, we developed a two-phase model to simulate the pressure transient behavior of a water injection well in a multiwell system. To solve the model more efficiently, we used the finite volume method to discretize partially differential flow equations in a hybrid grid system, including both Cartesian and radial meshes. The fully implicit Newton-Raphson method was also employed to solve the equations in our model. With this methodology, we compared the resulting solutions with a commercial simulator. Our results keep a good agreement with the solutions from the simulator. We then graphed the solutions on a log-log plot and concluded that the effects of transitional zone and interwell interference can be individually identified by analyzing specific flow regimes on the plot. Further, seven scenarios were raised to understand the parameters which dominate the pressure transient behavior of these flow regimes. Finally, we showed a workflow and verified the applicability of our model by demonstrating a case study in a Chinese offshore oilfield. Our model provides a useful tool to reduce errors in the interpretation of pressure transient data derived from injection wells located in a line drive pattern.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4718
Author(s):  
Song Wang ◽  
Jian Zhou ◽  
Luqing Zhang ◽  
Zhenhua Han

Hydraulic fracturing is a key technical means for stimulating tight and low permeability reservoirs to improve the production, which is widely employed in the development of unconventional energy resources, including shale gas, shale oil, gas hydrate, and dry hot rock. Although significant progress has been made in the simulation of fracturing a single well using two-dimensional Particle Flow Code (PFC2D), the understanding of the multi-well hydraulic fracturing characteristics is still limited. Exploring the mechanisms of fluid-driven fracture initiation, propagation and interaction under multi-well fracturing conditions is of great theoretical significance for creating complex fracture networks in the reservoir. In this study, a series of two-well fracturing simulations by a modified fluid-mechanical coupling algorithm were conducted to systematically investigate the effects of injection sequence and well spacing on breakdown pressure, fracture propagation and stress shadow. The results show that both injection sequence and well spacing make little difference on breakdown pressure but have huge impacts on fracture propagation pressure. Especially under hydrostatic pressure conditions, simultaneous injection and small well spacing increase the pore pressure between two injection wells and reduce the effective stress of rock to achieve lower fracture propagation pressure. The injection sequence can change the propagation direction of hydraulic fractures. When the in-situ stress is hydrostatic pressure, simultaneous injection compels the fractures to deflect and tend to propagate horizontally, which promotes the formation of complex fracture networks between two injection wells. When the maximum in-situ stress is in the horizontal direction, asynchronous injection is more conducive to the parallel propagation of multiple hydraulic fractures. Nevertheless, excessively small or large well spacing reduces the number of fracture branches in fracture networks. In addition, the stress shadow effect is found to be sensitive to both injection sequence and well spacing.


Sign in / Sign up

Export Citation Format

Share Document