A Nano-Pore Scale Gas Flow Model for Shale Gas Reservoir

2014 ◽  
Author(s):  
Y.. Li ◽  
X.. Li ◽  
J.. Shi ◽  
H.. Wang ◽  
L.. Wu ◽  
...  

Abstract Many shale/tight gas reservoirs can have pore scale values in the range from one to hundreds of nanometer. And the flow in nano-scale deviate the Darcy's law. Knudsen diffusion and/or gas slippage effects usually have modeled to character the non-Darcy flow mechanisms by many authors. In this paper, we investigate the non-Darcy flow mechanisms in unconventional gas reservoirs, and classify these various mechanisms based on different pore scale and pressure. Then, based on the change of pore scale and pressure, the models of gas flow that consider the absorption, desorption, slip flow, transition flow, Knudsen diffusion and continuous flow in nano-pore have been proposed to evaluate the flow character. Then, the relationship between the absorbed layers and pressure or Langmuir coefficient has been built and the influences of absorption of gas molecule have been studied on the permeability change. Compared with experimental value, the model could agree with the experimental value very well. And, desorption of the absorbed layers make the pore diameter become larger. When the thickness of the absorbed layers and the pore diameter ratio is larger than 0.1, the effect of adsorbed layer becomes very significant. With this study, the change of permeability and the gas rate on entire long term production performance could be understood better and predicted, and it is very important for the optimization of production performance and adjustment.

2011 ◽  
Vol 201-203 ◽  
pp. 399-403 ◽  
Author(s):  
Hong Qing Song ◽  
Ming Yue ◽  
Wei Yao Zhu ◽  
Dong Bo He ◽  
Huai Jian Yi

Porous media containing water is the prerequisite of existence of threshold pressure gradient (TPG) for gas flow. Based on theory of fluid mechanics in porous medium considering TPG, the non-Darcy flow mathematical model is established for formation pressure analysis of water-bearing tight gas reservoirs. It could provide semi-analytic solution of unsteady radial non-Darcy flow. According to the solution of unsteady radial non-Darcy flow, an easy and accurate calculation method for formation pressure analysis is presented. It can provide theoretical foundation for development design of water-bearing tight gas reservoirs. The analysis of calculation results demonstrates that the higher TPG is, the smaller formation pressure of water-bearing tight gas reservoirs spreads. In the same output, the reservoir sweep of non-Darcy gas flow is larger than that of non-Darcy liquid flow. And the pressure drop near wellbore is smaller than that of non-Darcy liquid flow, which is different from Darcy flow.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Zhiqiang Li ◽  
Zhilin Qi ◽  
Wende Yan ◽  
Zuping Xiang ◽  
Xiang Ao ◽  
...  

Production simulation is an important method to evaluate the stimulation effect of refracturing. Therefore, a production simulation model based on coupled fluid flow and geomechanics in triple continuum including kerogen, an inorganic matrix, and a fracture network is proposed considering the multiscale flow characteristics of shale gas, the induced stress of fracture opening, and the pore elastic effect. The complex transport mechanisms due to multiple physics, including gas adsorption/desorption, slip flow, Knudsen diffusion, surface diffusion, stress sensitivity, and adsorption layer are fully considered in this model. The apparent permeability is used to describe the multiple physics occurring in the matrix. The model is validated using actual production data of a horizontal shale gas well and applied to predict the production and production increase percentage (PIP) after refracturing. A sensitivity analysis is performed to study the effects of the refracturing pattern, fracture conductivity, width of stimulated reservoir volume (SRV), SRV length of new and initial fractures, and refracturing time on production and the PIP. In addition, the effects of multiple physics on the matrix permeability and production, and the geomechanical effects of matrix and fracture on production are also studied. The research shows that the refracturing design parameters have an important influence on the PIP. The geomechanical effect is an important cause of production loss, while slippage and diffusion effects in matrix can offset the production loss.


2015 ◽  
Vol 26 (06) ◽  
pp. 1550063 ◽  
Author(s):  
Yili Kang ◽  
Mingjun Chen ◽  
Xiangchen Li ◽  
Lijun You ◽  
Bin Yang

Gas flow mechanisms in shale are urgent to clarify due to the complicated pore structure and low permeability. Core flow experiments were conducted under reservoir net confining stress with samples from the Longmaxi Shale to investigate the characteristics of nonlinear gas flow. Meanwhile, microstructure analyses and gas adsorption experiments are implemented. Experimental results indicate that non-Darcy flow in shale is remarkable and it has a close relationship with pore pressure. It is found that type of gas has a significant influence on permeability measurement and methane is chosen in this work to study the shale gas flow. Gas slippage effect and minimum threshold pressure gradient weaken with the increasing backpressure. It is demonstrated that gas flow regime would be either slip flow or transition flow with certain pore pressure and permeability. Experimental data computations and microstructure analyses confirm that hydraulic radius of flow tubes in shale are mostly less than 100 nm, indicating that there is no micron scale pore or throat which mainly contributes to flow. The results are significant for the study of gas flow in shale, and are beneficial for laboratory investigation of shale permeability.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ting Huang ◽  
Xiao Guo ◽  
Kun Wang

Shale is abundant in nanoscale pores, so gas flow in shales cannot be simply represented by Darcy formula anymore. It is crucial to figure out the influence of gas flow in nano/micro pores on actual productivity, which can provide basic theories for optimizing parameters and improving the gas production from engineering perspective. This paper considers the effects of slippage and diffusion in nanoscale based on Beskok-Karniadakis (BK) equation, which can be applicable for different flow regimes including continuum flow, slip flow, transition flow, and free-molecule flow. A new non-Darcy equation was developed based on the analysis of effects of high order terms of BK equation on permeability correction factor. By using the conformal transformation principle and pressure coupling method, we established the productivity formula of fractured well (infinite and limited conductivity) satisfying mass variable seepage flowing in fractures. The simulation results have been compared with field data and influencing parameters are analyzed thoroughly. It is concluded that slippage effect affects gas production of fractured well when wellbore pressure is less than 15 MPa, and the effects of slippage and diffusion have greater influence on gas production of fractured well for reservoir with smaller permeability, especially when permeability is at nano-Darcy scale.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Bo-ning Zhang ◽  
Xiao-gang Li ◽  
Yu-long Zhao ◽  
Cheng Chang ◽  
Jian Zheng

The application of horizontal wells with multistage hydraulic fracturing technologies has made the development of shale gas reservoirs become a worldwide economical hotspot in recent years. The gas transport mechanisms in shale gas reservoirs are complicated, due to the multiple types of pores with complex pore structure and special process of gas accumulation and transport. Although there have been many attempts to come up with a suitable and practical mathematical model to characterize the shale gas flow process, no unified model has yet been accepted by academia. In this paper, a comprehensive literature review on the mathematical models developed in recent years for describing gas flow in shale gas reservoirs is summarized. Five models incorporating different transport mechanisms are reviewed, including gas viscous flow in natural fractures or macropores, gas ad-desorption on shale organic, gas slippage, diffusion (Knudsen diffusion, Fick diffusion, and surface diffusion), stress dependence, real gas effect, and adsorption layer effect in the nanoshale matrix system, which is quite different from conventional gas reservoir. This review is very helpful to understand the complex gas flow behaviors in shale gas reservoirs and guide the efficient development of shale gas. In addition to the model description, we depicted the type curves of fractured horizontal well with different seepage models. From the review, it can be found that there is some misunderstanding about the essence of Knudsen/Fick diffusion and slippage, which makes different scholars adopt different weighting methods to consider them. Besides, the contribution of each mechanism on the transport mechanisms is still controversial, which needs further in-depth study in the future.


SPE Journal ◽  
2016 ◽  
Vol 21 (02) ◽  
pp. 601-612 ◽  
Author(s):  
Binh T. Bui ◽  
Hui-Hai Liu ◽  
Jinhong Chen ◽  
Azra N. Tutuncu

Summary The condensation of the gas inside nanopores at pressures lower than the dewpoint pressure, or capillary condensation, is an important physical phenomenon affecting the gas flow/transport process in shale. This work investigates the underlying transport mechanism and governing factors for the gas transport at a pore scale associated with capillary condensation. We numerically simulate and compare the gas-transport process within pores for two cases, with and without capillary condensation, while Knudsen diffusion, wall slippage, and phase transition are included in the numerical model. In each case, the simulations are performed for two pore geometries corresponding to a single pore and two parallel-connected pores. The main objective is to determine whether capillary condensation blocks or enhances gas transport during production. The results show that the presence of the liquid phase in the pore throat initially enhances the gas flow rate to the outlet of the pore, but significantly reduces it later. This blockage depends on pore geometry and the properties of the oil and gas phases. The relatively low mobility of the condensed liquid in the pore throat is the main factor that reduces the mass transport along the pore. The reduction of overall mass transport in a single pore is more significant than that for the parallel pore geometry. Implications of this work for predicting large-scale gas transport in shale are also discussed.


SPE Journal ◽  
2015 ◽  
Vol 20 (01) ◽  
pp. 99-111 ◽  
Author(s):  
Pichit Vardcharragosad ◽  
Luis F. Ayala H.

Summary Accounting for depletion-dependent permeability and sorbed-phase effects is an important step toward achieving reliable analysis of production performance in unconventional gas systems. This study demonstrates how to account for pressure-dependent apparent-permeability (e.g., gas-slippage) and desorption effects in gas-production analysis of boundary-dominated data with a density-based approach. In this work, apparent-permeability and desorption models are incorporated into the original density-based approach by modifying the definitions of depletion-driven variables that are the basis of the density-based type of analysis. The proposed modification of the original approach successfully enables associated analysis techniques to be applicable to natural-gas reservoirs with gas slippage and adsorbed gas. Results indicate that by modifying the definitions of the depletion-driven variables, the density approach can effectively and successfully capture the effects from gas slippage and desorption. Through a number of case studies, we show that gas-flow rate can be successfully predicted by rescaling liquid solution with the modified density-based variables. As an illustration, we show that resource calculations able to fully take into account these effects are possible when long-term production data are available. This work details the methodology required to do so, and illustrates its application to production-data prediction analysis for unconventional assets.


2021 ◽  
Vol 11 (5) ◽  
pp. 2217-2232
Author(s):  
Jiangtao Li ◽  
Jianguang Wei ◽  
Liang Ji ◽  
Anlun Wang ◽  
Gen Rong ◽  
...  

AbstractIt is difficult to predict the flow performance in the nanopore networks since traditional assumptions of Navier–Stokes equation break down. At present, lots of attempts have been employed to address the proposition. In this work, the advantages and disadvantages of previous analytical models are seriously analyzed. The first type is modifying a mature equation which is proposed for a specified flow regime and adapted to wider application scope. Thus, the first-type models inevitably require empirical coefficients. The second type is weight superposition based on two different flow mechanisms, which is considered as the reasonable establishment method for universal non-empirical gas-transport model. Subsequently, in terms of slip flow and Knudsen diffusion, the novel gas-transport model is established in this work. Notably, the weight factors of slip flow and Knudsen diffusion are determined through Wu’s model and Knudsen’s model respectively, with the capacity to capture key transport mechanism through nanopores. Capturing gas flow physics at nanoscale allows the proposed model free of any empirical coefficients, which is also the main distinction between our work and previous research. Reliability of proposed model is verified by published molecular simulation results as well. Furthermore, a novel permeability model for coal/shale matrix is developed based on the non-empirical gas-transport model. Results show that (a) nanoconfined gas-transport capacity will be strengthened with the decline of pressure and the decrease in the pressure is supportive for the increasing amplitude; (b) the greater pore size the nanopores is, the stronger the transport capacity the nanotube is; (c) after field application with an actual well in Fuling shale gas field, China, it is demonstrated that numerical simulation coupled with the proposed permeability model can achieve better historical match with the actual production performance. The investigation will contribute to the understanding of nanoconfined gas flow behavior and lay the theoretical foundation for next-generation numerical simulation of unconventional gas reservoirs.


2021 ◽  
Author(s):  
Yu Jiang ◽  
John Killough ◽  
Linkai Li ◽  
Xiaona Cui ◽  
Jin Tang

Abstract The exploitation of shale gas has attracted extensive attention in industry and academia. Multi-scale gas transportation mechanisms in matrix and fractures have been well studied. However, due to the presence of water originating from both fracking fluids and connate water, shale gas production is also greatly affected by water imbibition and flowback, of which the processes have not been thoroughly analyzed. This paper aims at presenting a comprehensive multi-continuum multi-component model to characterize the complicated shale gas flow behaviors as well as the impact of non-Darcy water flow on shale gas production. A two-phase numerical simulator is built up with multi-continuum settings. Shale matrix is split into organic and inorganic matters while natural and hydraulic fractures are modeled using an embedded discrete fracture model (EDFM). Fracture closure and elongation are modeled using a dynamic gridding approach. Different transportation mechanisms are considered to describe gas flow in shale, including Knudsen diffusion, ab/desorption, and convection. The low-velocity non-Darcy flow of water is used in inorganic pores to analyze the effect of water flow. A pre-stage model based on pumping history is simulated firstly before production starts. This serves as an initialization step to model fracking fluid imbibition and early-stage water flowback. This pre-stage simulation gives out more precise pressure and saturation profiles than the conventional non-equilibrium initialization method, especially in enhanced pore volumes and fractures. Based upon simulation results from the production period, Langmuir isotherm absorption has shown a massive impact on gas flow in shale, and Knudsen diffusion weights highest among transport mechanisms. Water non-Darcy flow better benefits in simulating both early-stage water flowback and production process compared with Darcy flow, which gives us a new explanation on the low flowback efficiency in real shale gas operations. Studies on early-stage water flowback also show that the flowback affects saturation distribution, which has a strong relationship with gas production and shall not be ignored. This work establishes a novel method to simulate and analyze shale gas production. It considers multiple and complex flow mechanisms and gives out better estimates of water flux. It is also used to initialize a model for pumping water imbibition and early-stage flowback, which can be used as technical resources for analyzing and simulating unconventional plays.


2021 ◽  
Vol 248 ◽  
pp. 01071
Author(s):  
Tingwei Yao ◽  
Yang Zhang ◽  
Minhao Guo ◽  
Zhilin Tuo ◽  
Haiyang Wang ◽  
...  

In the process of continuous production of natural gas wells, formation pressure and gas flow rate decrease continuously. The ability to carry liquid decreases continuously, thus gradually forming bottom hole liquid. Bottom hole liquid accumulation is an important reason for the decrease of production or shutdown of natural gas wells. How to diagnose whether there is liquid accumulation in natural gas wells and identify the degree of liquid accumulation, to adopt drainage gas recovery operation in time, is the research focus of efficient development of natural gas reservoirs. In this paper, a method for diagnosing bottom hole liquid accumulation combining production performance curve and modified Fernando inclined well critical liquid-carrying model is designed for a large scale double-branch horizontal well used in unconventional reservoirs. The method is applied to the Well X2 of He 8 Member in PCOC. The application results showed that there was no liquid accumulation in the horizontal and vertical sections of the Well X2. The liquid in the wellbore was generated at the bottom of the inclined section and the liquid accumulation is upward along the wellbore from the bottom of the inclined section, with the height of 3 m.


Sign in / Sign up

Export Citation Format

Share Document