A Model for Extending the Heptanes plus Fraction for Trinidad Gas Condensates

2014 ◽  
Author(s):  
R.. Mayrhoo ◽  
R.. Hosein

Abstract An accurate description of pseudo-component compositions is required for Equation of State predictions for gas condensate systems. Very often these extended experimental data are unavailable and must be generated using mathematical models, of which the exponential and the three-parameter gamma distribution functions are the two most widely used. The development of these two techniques was based on the assumption of a continuous molar relationship for pseudo-components. However, experimental compositional data for gas condensate systems show discontinuities in this relationship at SCN8 and SCN13. The above models when applied to extend the C7+ fraction for Trinidad gas condensates, under predict the SCN8 mole percent and over predict the SCN12 mole percent due to the aforementioned discontinuities. The Average Absolute Deviation between the predicted and experimental SCN8 and SCN12 data were both greater than 25 percent. The two coefficient method described by Ahmed et al., when applied to extend the C7+ fraction, reduced the discontinuity at SCN8 to less than 12 percent. However the SCN12 group still had a deviation greater than 18 percent. These results show that existing models were not designed to take care of these discontinuities and should be used with caution when extending experimental data beyond SCN7. The Model described in this study resolves these discontinuities in the molar relationships at both SCN8 and SCN12 with an Average Absolute Deviation between the predicted and experimental compositions of less than 10 percent. This model can quite easily be included in Equation of State packages for a more accurate description of compositions for Trinidad gas condensates for performing compositional simulation studies. A partial analysis beyond the C7+ fraction is not required with this new model.

2009 ◽  
Vol 12 (01) ◽  
pp. 159-166 ◽  
Author(s):  
Raffie Hosein ◽  
William D. McCain

Summary Equation of State (EOS) predictions for gas condensate systems require extended analysis beyond the heptanes plus (C7+) fraction. In the absence of experimental data, several schemes have been proposed to extend these compositional data based on the observation that a single straightline relationship exists between log of mole percent and molecular weight for these pseudocomponents or single carbon number (SCN) fractions. An examination of compositional analysis for gas condensate systems showed a discontinuity in the relationship between mole percent and molecular weight at C8 and C13. As a result, two straight lines are needed for a more accurate description of SCN composition; one from C8 to C12, and the other from C13 and beyond. When applied, this new universal observation gives an improved prediction of SCN composition. An average absolute deviation of less than 6.0% between the predicted and experimental composition was obtained using parameters from two straight lines. From a single straightline relationship, this difference was as high as 36.0%. This new observation provides the basis for defining the partial experimental analysis required for applying extended models for a more accurate description of SCN composition. For the logarithmic distribution, a partial analysis to C20+ is required to define the change in slope at C13 and beyond. For the three parameter gamma distribution function, a partial analysis is required up to C14 and splitting can be applied from C14+ and beyond. These widely used models are not suitable for extending the C7+ fraction. Introduction With the increasing emphasis on liquid natural gas (LNG), natural gas liquids (NGLs) and liquid condensates during the last 15 years, gas condensate reservoirs became increasingly important. A combination of laboratory studies, such as Chromatographic; true boiling point (TBP); and pressure, volume, temperature (PVT) analyses became necessary for characterizing these reservoir fluids and evaluating their volumetric performance at various pressure depletion stages. An accurate description of pseudocomponent compositions is an integral part of the reservoir fluids characterization process. For gas condensate systems, these data are applied with Equations of State (EOS) to evaluate gas and condensate reserves and production for field development and surface facility design. The evaluations rely on a tuned EOS formulated from adjustment of SCN compositions. Good quality compositional data require minimal adjustment for obtaining the best match between predicted and experimental phase behavior data. Very often the required extended compositional data are unavailable experimentally and are generated from mathematical relationships. Literature (Ahmed 1989; Danesh 1998; Pedersen et el. 1989) has shown that a plot of SCN composition against molecular weight produces a continuous exponential relationship for gas condensate systems. This observation also led to a generally accepted representation of a single straightline relationship between log of mole percent and molecular weight for these SCN fractions. Based on this observation, very useful functional approaches called "splitting" schemes (Whitson 1983; Pedersen et al. 1984) were devised to describe the composition of these SCN fractions in the absence of experimental data. Although splitting schemes are applied from the C7+ or last available plus fraction, a review by Danesh (1998) stated that a partial analysis is first required followed by the application of these schemes. To date, literature has not specified the SCN or last plus fraction for terminating a partial analysis. From an examination of compositional analysis for gas condensate systems, this paper describes a different universal trend from the single straightline relationship between log of mole percent and molecular weight. Also, the last plus fraction is defined for terminating a partial analysis. A total of 22 compositional data sets to C20+ were examined. Six of these were generated experimentally from separator samples taken in Trinidad (Hosein 2004) and 16 were taken from PVT lab reports generated from samples taken worldwide.


2015 ◽  
Vol 9 (7) ◽  
pp. 177 ◽  
Author(s):  
Gede Wibawa ◽  
Muhammad F. A. Nafi ◽  
Asti Permatasari ◽  
Asalil Mustain

In this study, the performances of Peng-Robinson Equation of State combined with the classical mixing ruleswere evaluated to calculate solid-vapor equilibrium (SVE) and solid-liquid equilibrium (SLE) of CH4-CO2system. The evaluation was performed by comparing the calculated values with the literature data. In thecalculation of SVE, the new binary interaction parameter values (kij) of CH4-CO2 mixtures were proposed in thiswork based on the experimental data. The proposed kij obtained in this work might increase the accuracy ofPeng-Robinson Equation of State by reducing average absolute deviation in the temperatures between calculatedvalues and literature data from (2.18% to 0.26%), (0.88% to 0.70%) and (0.61% to 0.44%) at CO2 compositionof 1%, 1.91% and 2.93%, respectively. Significant improvement was found at CO2 composition of 1%. In thecalculation of SLE, new parameters were not proposed since the calculation using the existing (literature) kijgives good results with an average absolute deviation of 0.5%.


2014 ◽  
Vol 13 (05) ◽  
pp. 1450038 ◽  
Author(s):  
Jun Lu ◽  
Jucai Yang ◽  
Zhifei Xing ◽  
Hongmei Ning

The geometries, electronic structures and energies of small TiSi n species (n = 1–8) and their anions were systematically investigated by G4 theory. The ground-state structures of these clusters are presented herein. For neutral TiSi n (n = 1–8), the spin multiplicities of the ground-state structures are singlet, with the exception of n = 2, which exists in a triplet state. For anionic TiSi n-, the spin multiplicities of the ground-state structures are doublet, with the exception of n = 2, which is quartet. The adiabatic electron affinities for TiSi n are estimated to be 1.31 eV ( TiSi ), 1.46 eV ( TiSi 2), 1.53 eV ( TiSi 3), 1.71 eV ( TiSi 4), 2.06 eV ( TiSi 5), 2.16 eV ( TiSi 6), 2.20 eV ( TiSi 7) and 2.39 eV ( TiSi 8). In comparison with the available experimental data, the calculated adiabatic electron affinities differ from experimental values by an average absolute deviation of only 0.03 eV. Additionally, the dissociation energies of Ti atoms from TiSi n, and Si atoms from TiSi n and Si n clusters are estimated to examine relative stabilities.


2017 ◽  
Vol 58 (2) ◽  
Author(s):  
Farkhondeh Mozaffari

In this work, the Song and Mason equation of state has been applied to calculate the <em>PVT</em> properties of refrigerants. The equation of state is based on the statistical-mechanical perturbation theory of hard convex bodies. The theory has considerable predictive power, since it permits the construction of the <em>PVT</em> surface from the normal boiling temperature and the liquid density at the normal boiling point. The average absolute deviation for the calculated densities of 11 refrigerants is 1.1%.


Liquids ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 47-59
Author(s):  
Gerrick E. Lindberg ◽  
Joseph L. Baker ◽  
Jennifer Hanley ◽  
William M. Grundy ◽  
Caitlin King

The properties of alkanes are consequential for understanding many chemical processes in nature and industry. We use molecular dynamics simulations with the Amber force field GAFF2 to examine the structure of pure liquids at each respective normal boiling point, spanning the 15 n-alkanes from methane to pentadecane. The densities predicted from the simulations are found to agree well with reported experimental values, with an average deviation of 1.9%. The enthalpies of vaporization have an average absolute deviation from experiment of 10.4%. Radial distribution functions show that short alkanes have distinct local structures that are found to converge with each other with increasing chain length. This provides a unique perspective on trends in the n-alkane series and will be useful for interpreting similarities and differences in the n-alkane series as well as the breakdown of ideal solution behavior in mixtures of these molecules.


2012 ◽  
Vol 581-582 ◽  
pp. 50-53 ◽  
Author(s):  
Li Ping Guo ◽  
Lei Wang ◽  
Yi Min Zhang

The rheology behavior of waxy crude emulsion is an important basic information on safeguard research of crude oil-water flow. The non-newtonian characteristics of apparent viscosity of three kinds of waxy crude emulsions were studied experimentally around condensation point; three apparent viscosity forecasting models were evaluated by least-square regressions based on experimental data of shear balance and the average absolute deviation was taken as the measurement of fitness of a model to experimental data. It is concluded that the Pal-Rhodes model, whose relative deviation can be as high as 80%, is the worst forecasting model, but it need the least experiment data to obtain model parameters, only water cut was needed. Elgibaly model has the best forecasting results, the average absolute deviation of forecasting results of three waxy crude emulsions under the condition of different temperature, water cut and shear rate were all less than 15%, but compared with the other two models, Elgibaly model needs the most parameters.


2018 ◽  
Author(s):  
Ibukun Makinde

Gas condensates are liquid mixtures of high-boiling hydrocarbons of various structures, separated from natural gases during their production at gas condensate fields. When transporting gas through pipelines, the following gas quality conditions should be met:i.During transportation, gases should not cause corrosion of pipelines, fittings, instruments, etc.ii.The quality of the gas must ensure its transportation in a single-phase state i.e., liquid hydrocarbons, gas condensates and hydrates should not form in the pipelines.In order for gas condensates to meet the above-mentioned quality conditions during storage or transportation, they must be stabilized. Gas condensate stabilization is the process of “boiling off” light hydrocarbons from the condensate that would otherwise increase the vapor pressure when conditions are fluctuating.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ilyas Al-Kindi ◽  
Tayfun Babadagli

AbstractThe thermodynamics of fluids in confined (capillary) media is different from the bulk conditions due to the effects of the surface tension, wettability, and pore radius as described by the classical Kelvin equation. This study provides experimental data showing the deviation of propane vapour pressures in capillary media from the bulk conditions. Comparisons were also made with the vapour pressures calculated by the Peng–Robinson equation-of-state (PR-EOS). While the propane vapour pressures measured using synthetic capillary medium models (Hele–Shaw cells and microfluidic chips) were comparable with those measured at bulk conditions, the measured vapour pressures in the rock samples (sandstone, limestone, tight sandstone, and shale) were 15% (on average) less than those modelled by PR-EOS.


Author(s):  
Mohammad Jamali ◽  
Amir Abbas Izadpanah ◽  
Masoud Mofarahi

AbstractIn this work, solubility of hydrogen in some alkenes was investigated at different temperatures and pressures. Solubility values were calculated using the Peng–Robinson equation of state. Binary interaction parameters were calculated using fitting the equation of state on experimental data, Group contribution method and Moysan correlations and total average absolute deviation for these methods was 3.90, 17.60 and 13.62, respectively. Because hydrogen solubility in Alkenes is low, Henry’s law for these solutions were investigated, too. Results of calculation showed with increasing temperature, Henry’s constant was decreased. The temperature dependency of Henry’s constants of hydrogen in ethylene and propylene was higher than to other alkenes. In addition, using Van’t Hoff equation, the thermodynamic parameters for dissolution of hydrogen in various alkenes were calculated. Results indicated that the dissolution of hydrogen was spontaneous and endothermic. The total average of dissolution enthalpy ($${\Delta H}^{^\circ }$$ Δ H ∘ ) and Gibbs free energy ($${\Delta G}^{^\circ }$$ Δ G ∘ ) for these systems was 3.867 kJ/mol and 6.361 kJ/mol, respectively. But dissolution of hydrogen in almost of alkenes was not an entropy-driven process.


2021 ◽  
Vol 11 (8) ◽  
pp. 3310
Author(s):  
Marzio Invernizzi ◽  
Federica Capra ◽  
Roberto Sozzi ◽  
Laura Capelli ◽  
Selena Sironi

For environmental odor nuisance, it is extremely important to identify the instantaneous concentration statistics. In this work, a Fluctuating Plume Model for different statistical moments is proposed. It provides data in terms of mean concentrations, variance, and intensity of concentration. The 90th percentile peak-to-mean factor, R90, was tested here by comparing it with the experimental results (Uttenweiler field experiment), considering different Probability Distribution Functions (PDFs): Gamma and the Modified Weibull. Seventy-two percent of the simulated mean concentration values fell within a factor 2 compared to the experimental ones: the model was judged acceptable. Both the modelled results for standard deviation, σC, and concentration intensity, Ic, overestimate the experimental data. This evidence can be due to the non-ideality of the measurement system. The propagation of those errors to the estimation of R90 is complex, but the ranges covered are quite repeatable: the obtained values are 1–3 for the Gamma, 1.5–4 for Modified Weibull PDF, and experimental ones from 1.4 to 3.6.


Sign in / Sign up

Export Citation Format

Share Document