scholarly journals Genomic analysis of Escherichia coli strains isolated from diseased chicken in the Czech Republic

2020 ◽  
Author(s):  
Aneta Papoušková ◽  
Martina Masaříková ◽  
Adam Valček ◽  
David Šenk ◽  
Darina Čejková ◽  
...  

Abstract Background: Avian pathogenic Escherichia coli (APEC) can cause various extraintestinal infections in poultry, resulting in massive economic losses in poultry industry. In addition, some avian E. coli strains may have zoonotic potential, making poultry a possible source of infection for humans. Due to its extreme genetic diversity, this pathotype remains poorly defined. This study aimed to investigate the diversity of colibacillosis-associated E. coli isolates from Central European countries with a focus on the Czech Republic. Results: Of 95 clinical isolates subjected to preliminary characterization, 32 were selected for whole-genome sequencing. A multi resistant phenotype was detected in a majority of the sequenced strains with the predominant resistance to β-lactams and quinolones being associated with TEM-type beta-lactamase genes and chromosomal gyrA mutations respectively. The phylogenetic analysis confirmed a great diversity of isolates, that were derived from nearly all phylogenetic groups, with predominace of B2, B1 and C phylogroups. Clusters of closely related isolates within ST23 (phylogroup C) and ST429 (phylogroup B2) indicated a possible local spread of these clones. Besides, the ST429 cluster carried blaCMY-2, -59 genes for AmpC beta-lactamase and isolates of both clusters were generally well-equipped with virulence-associated genes, with considerable differences in distribution of certain virulence-associated genes between phylogenetically distant lineages. Other important and potentially zoonotic APEC STs were detected, incl. ST117, ST354 and ST95, showing several molecular features typical for human ExPEC. Conclusions: The results support the concept of local spread of virulent APEC clones, as well as of zoonotic potential of specific poultry-associated lineages, and highlight the need to investigate the possible source of these pathogenic strains.

2019 ◽  
Author(s):  
Aneta Papoušková ◽  
Martina Masaříková ◽  
Adam Valček ◽  
David Šenk ◽  
Darina Čejková ◽  
...  

Abstract Background: Avian pathogenic Escherichia coli (APEC) can cause various extraintestinal infections in poultry, resulting in massive economic losses in poultry industry. In addition, some avian E. coli strains may have zoonotic potential, making poultry a possible source of infection for humans. Due to its extreme genetic diversity, this pathotype remains poorly defined. This study aimed to investigate the diversity of colibacillosis-associated E. coli isolates from Central European countries with a focus on the Czech Republic. Results: Of 95 clinical isolates subjected to preliminary characterization, 32 were selected for whole-genome sequencing. A multi resistant phenotype was detected in a majority of the sequenced strains with the predominant resistance to β -lactams and quinolones being associated with TEM-type beta-lactamase genes and chromosomal gyrA mutations respectively. The phylogenetic analysis confirmed a great diversity of isolates, that were derived from nearly all phylogenetic groups, with predominace of B2, B1 and C phylogroups. Clusters of closely related isolates within ST23 (phylogroup C) and ST429 (phylogroup B2) indicated a possible local spread of these clones. Besides, the ST429 cluster carried blaCMY-2, -59 genes for AmpC beta-lactamase and isolates of both clusters were generally well-equipped with virulence-associated genes, with considerable differences in distribution of certain virulence-associated genes between phylogenetically distant lineages. Other important and potentially zoonotic APEC STs were detected, incl. ST117, ST354 and ST95, showing several molecular features typical for human ExPEC.Conclusions: The results support the concept of local spread of virulent APEC clones, as well as of zoonotic potential of specific poultry-associated lineages, and highlight the need to investigate the possible source of these pathogenic strains.


2019 ◽  
Author(s):  
Aneta Papoušková ◽  
Martina Masaříková ◽  
Adam Valček ◽  
David Šenk ◽  
Darina Čejková ◽  
...  

Abstract Background Avian pathogenic Escherichia coli (APEC) can cause various extraintestinal infections in chicken, resulting in massive economic losses in poultry industry. Apart from that, some avian E. coli strains may have zoonotic potential, making poultry a possible source of infection for humans. Due to its extreme genetic diversity, this pathotype remains poorly defined. This study aimed to investigate the diversity of colibacillosis-associated E. coli isolates from Central European countries with a focus on the Czech Republic.Results Out of 95 preliminarily characterized clinical isolates 32 isolates were selected for whole-genome sequencing. A multiresistant phenotype was detected in a majority of them and the predominant resistance to lactams and quinolones was widely associated with TEM-type beta-lactamase genes and chromosomal gyrA mutations, respectively. The phylogenetic analysis confirmed a great diversity of isolates, that were derived from nearly all phylogenetic groups, with predominace of B2, B1 and C phylogroups. Clusters of closely related isolates within ST23 (phylogroup C) and ST429 (phylogroup B2) indicated a long-term local spread of these clones. Besides, the ST429 cluster carried bla CMY-2, -59 genes for AmpC beta-lactamase and isolates of both clusters were generally well-equipped with virulence-associated genes, with considerable differences in distribution of certain virulence-associated genes between phylogenetically distant lineages. Other important and potentially zoonotic APEC STs were detected, incl. ST117, ST354 and ST95, showing several molecular features typical for human ExPEC.Conclusions The results support the concept of local spread of virulent APEC clones, as well as of zoonotic potential of specific poultry-associated lineages, and highlight the need to investigate the possible source of these pathogenic strains.


2010 ◽  
Vol 55 (No. 3) ◽  
pp. 119-124 ◽  
Author(s):  
M. Kolar ◽  
J. Bardon ◽  
M. Chroma ◽  
K. Hricova ◽  
T. Stosova ◽  
...  

A major reason for resistance of <I>Enterobacteriaceae</I> to beta-lactam antibiotics is production of ESBLs and AmpC beta-lactamases. As their more detailed description in poultry is unavailable in the Czech Republic, the presented study aimed at assessing their occurrence and molecular characteristics. A total of 154 composite samples from broilers and 150 cloacal swabs from turkeys were examined. Production of ESBLs was detected in seven <I>Escherichia coli</I> isolates and AmpC enzymes in two <I>E. coli</I> isolates. The most frequent ESBL types were CTX-M-1 and SHV-12 and the most common AmpC enzymes were the CMY-2 types.


2014 ◽  
Vol 81 (2) ◽  
pp. 648-657 ◽  
Author(s):  
Ivana Jamborova ◽  
Monika Dolejska ◽  
Jiri Vojtech ◽  
Sebastian Guenther ◽  
Raluca Uricariu ◽  
...  

ABSTRACTExtended-spectrum-beta-lactamase (ESBL)-producing, AmpC beta-lactamase-producing, and plasmid-mediated quinolone resistance (PMQR) gene-positive strains ofEscherichia coliwere investigated in wintering rooks (Corvus frugilegus) from eight European countries. Fecal samples (n= 1,073) from rooks wintering in the Czech Republic, France, Germany, Italy, Poland, Serbia, Spain, and Switzerland were examined. Resistant isolates obtained from selective cultivation were screened for ESBL, AmpC, and PMQR genes by PCR and sequencing. Pulsed-field gel electrophoresis and multilocus sequence typing were performed to reveal their clonal relatedness. In total, from the 1,073 samples, 152 (14%) cefotaxime-resistantE. coliisolates and 355 (33%)E. coliisolates with reduced susceptibility to ciprofloxacin were found. Eighty-two (54%) of these cefotaxime-resistantE. coliisolates carried the following ESBL genes:blaCTX-M-1(n= 39 isolates),blaCTX-M-15(n= 25),blaCTX-M-24(n= 4),blaTEM-52(n= 4),blaCTX-M-14(n= 2),blaCTX-M-55(n= 2),blaSHV-12(n= 2),blaCTX-M-8(n= 1),blaCTX-M-25(n= 1),blaCTX-M-28(n= 1), and an unspecified gene (n= 1). Forty-seven (31%) cefotaxime-resistantE. coliisolates carried theblaCMY-2AmpC beta-lactamase gene. Sixty-two (17%) of theE. coliisolates with reduced susceptibility to ciprofloxacin were positive for the PMQR genesqnrS1(n= 54),qnrB19(n= 4),qnrS1andqnrB19(n= 2),qnrS2(n= 1), andaac(6′)-Ib-cr(n= 1). Eleven isolates from the Czech Republic (n= 8) and Serbia (n= 3) were identified to be CTX-M-15-producingE. coliclone B2-O25b-ST131 isolates. Ninety-one different sequence types (STs) among 191 ESBL-producing, AmpC-producing, and PMQR gene-positiveE. coliisolates were determined, with ST58 (n= 15), ST10 (n= 14), and ST131 (n= 12) predominating. The widespread occurrence of highly diverse ESBL- and AmpC-producing and PMQR gene-positiveE. coliisolates, including the clinically important multiresistant ST69, ST95, ST117, ST131, and ST405 clones, was demonstrated in rooks wintering in various European countries.


2011 ◽  
Vol 56 (No. 4) ◽  
pp. 149-155 ◽  
Author(s):  
P. Alexa ◽  
L. Konstantinova ◽  
Z. Sramkova-Zajacova

A survey to estimate the prevalence of verotoxigenic E. coli (VTEC) or enterohaemorrhagic E. coli (EHEC) in rectal swabs from healthy dairy cattle aged three weeks, three months and one year was conducted in three herds from the Czech Republic. Screening for the presence of the stx1, stx2 and eaeA genes in faecal swab cultures was performed by PCR, and in positive samples, isolated colonies were examined. Immunomagnetic separation was used for the isolation of the VTEC serogroup O157 from samples. VTEC were detected in animals from all three herds under study. In the group of 3-week-old calves, VTEC were only detected in samples collected in the summer months. However, in the other age-groups, VTEC were detected in both the summer and winter months. EHEC shedding was observed in 30 to 100% of the total samples collected from cattle aged three months and one year in the summer months, and in 30 to 60% of samples taken in the winter months. EHEC strains of serogroup O157 were detected in two herds. The range of verotoxins shed by VTEC isolates of serogroup O157 differed between herds. Besides serogroup O157, additional EHEC belonging to the antigen groups O26, O103, O128 and O153 have been identified, and in some of them, no somatic antigen was detected.


2011 ◽  
Vol 55 (6) ◽  
pp. 3005-3007 ◽  
Author(s):  
Ivan Literak ◽  
Radim Petro ◽  
Monika Dolejska ◽  
Erika Gruberova ◽  
Hana Dobiasova ◽  
...  

ABSTRACTThe study was performed in the Czech Republic during 2007 to 2009. OfEscherichia coliisolates from 275 children aged 6 weeks, 36% (n= 177) were resistant to 1 to 7 antibiotics. Of isolates from 253 children aged 6 to 17 years, 24% (n= 205) were resistant to 1 to 5 antibiotics. There was no significant difference in the prevalences of antibiotic-resistantE. coliisolates between these groups of children, even though the consumptions of antibiotics were quite different.


2021 ◽  
Vol 19 (3) ◽  
pp. 349-362
Author(s):  
Prayuth Saekhow ◽  
◽  
Chayaphon Sriphannam ◽  
◽  

We investigated the prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli strains in dairy farm wastewater in Chiang Mai, Thailand. We analyzed wastewater samples collected from 150 dairy farms and found that 88.7% of the farms (n = 133) were positive for ESBL-producing E. coli. Multiplex polymerase chain reaction (PCR) amplification was performed to characterize the presence of bla CTX-M, bla TEM, and blaSHV in ESBL-producing isolates. blaCTX-M was found in all isolates (n = 133), followed by blaTEM (80/133, 60.2%), whereas blaSHV was not detected in any isolate. blaCTX-M and blaTEM were present in 60.2% (80/133) of the isolates, and 39.8% (53/133) isolates carried bla CTX-M alone. Subgroup analysis showed that CTX-M-1 was the most prevalent subgroup among the isolates (129/133, 97.0%), followed by CTX-M-8 (2/133, 1.5%) and CTX-M-9 (2/133, 1.5%). The distribution of the phylogenetic groups was as follows: group A (100/133, 75.2%), followed by B1 (14/133, 10.5%), D (6/133, 4.5%), F (6/133, 4.5%), B2 (4/133, 3.0%), and E (3/133, 2.3%). Based on enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) and dendrogram analysis, 24 isolates were classified into clades I (n = 21), II (n =1), and III (n =2). Minor genetic differences were found in all clade I isolates. Our data suggest that the circulating of ESBL-producing E. coli carried at least one bla gene strain distributed in dairy farm wastewater in Chiang Mai.


2001 ◽  
Vol 46 (No. 2) ◽  
pp. 46-49 ◽  
Author(s):  
P. Alexa ◽  
K. Štouračová ◽  
J. Hamřík ◽  
I. Rychlík

More than 4 000&nbsp;E. coli&nbsp;strains isolated from diarrhoeic piglets in 111 pig herds in the Czech Republic during the period 1995&ndash;2000 were examined for serogroup and virulence factors. Gene typing of the K88 marker by polymerase chain reaction (PCR) was used for the examination of 283 enterotoxigenic strains (ETEC) which agglutinated with antisera against K88 or adhered to intestinal brush borders. The K88 gene was detected in 237 strains; among them 232&nbsp;strains possesed the K88 variant. Genotype K88ab was found in two strains of the serogroup O8 from one herd and the gene K88ad was detected in three strains of the serogroup O8 originating from another herd. The results show that the type K88ac is predominant in ETEC strains with colonisation factors K88 in pig herds in the Czech Republic.


2013 ◽  
Vol 76 (10) ◽  
pp. 1773-1777 ◽  
Author(s):  
J. BARDOŇ ◽  
V. HUSIČKOVÁ ◽  
M. CHROMÁ ◽  
M. KOLÁŘ

Resistance of bacteria to antibiotics is a global medical problem requiring close cooperation between veterinary and human physicians. Raw materials and foods of animal origin may be not only a source of pathogenic bacteria causing alimentary tract infections but also a source of bacteria with a dangerous extent of resistance to antibiotics, potentially entering the human food chain. This article presents results of the first study in the Czech Republic detecting the presence of Enterobacteriaceae-producing extended-spectrum β-lactamases (ESBLs) in swabs collected in slaughterhouses from surfaces of healthy animal carcasses. In 2012, swabs taken from pig (n = 166) and cattle (n = 140) carcass surfaces were analyzed. In 17% of 53 studied slaughterhouses, ESBL-producing Escherichia coli strains were isolated. ESBLs were found in 11 and 4% of porcine and bovine samples, respectively. Swabs collected from pigs yielded 18 ESBL-producing E. coli strains. The bla genes were found to encode production of CTX-M-1 group enzymes in 16 strains, SHV in one case, and both CTX-M-1–like and TEM in another case. In swabs taken from cattle, five ESBL-producing E. coli strains were isolated. In three cases, the bla genes for CTX-M-1–like production were identified; in two cases, genes for both CTX-M-1–like and TEM production were found. The similarity/identity of ESBL-positive isolates was compared by pulsed-field gel electrophoresis. This is the first report and characterization of the presence and nature of ESBL-producing E. coli in swabs collected from surfaces of healthy pig and cattle carcasses in slaughterhouses in the Czech Republic.


Sign in / Sign up

Export Citation Format

Share Document