scholarly journals Notoginsenoside R1 (NGR1) induce DNA damage to inhibit cervical cancer cells proliferation by inhibiting PHF6 activity

2020 ◽  
Author(s):  
Ting Cai ◽  
Wenquan Wu ◽  
Qiang Ming ◽  
Longhua Guo ◽  
Yongwu Xia ◽  
...  

Abstract Notoginsenoside R1 (NGR1) is isolated from the panax notoginseng which is a kind of Traditional Chinese Medicine and edible plant with good healthful effect that using range is very wide for medical treatment and health care. It had been demonstrated to inhibit various tumors proliferation, but whether it inhibited cervical cancer cells proliferation and its mechanism was not unclear. In this study, we showed that NGR1 could inhibit cervical cancer cells to proliferate with a time and dose dependent manner, induce cervical cancer cells apoptosis and arrest cervical cancer cells in G1/S-phase . We also found that NGR1 could make H2AX phosphorylation and inhibit PHF6 expression with a time and dose dependent manner. Furthermore, when over expression PHF6 gene, the γH2AX haven't any change , but silenced PHF6 gene with siRNA, the γH2AX increased significantly. That mean PHF6 has negative correlation with γH2AX. Subsequently , we added NGR1 to intervene, something interesting happened that PHF6 protein fell even more, but the γH2AX more up regulation in the siPHF6 and NGR1 group. In the PEGFP-C1-PHF6 plasmid vector and NGR1 group, inversely , the PHF6 protein declined, and the γH2AX still up regulation . All those results indicate d that NGR1 caused DNA injury by inhibiting PHF6 activity pathway and arrested cervical cancer cells in G1/S-phase.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Wai Kuan Yong ◽  
Sri Nurestri Abd Malek

We investigate induction of apoptosis by xanthohumol on Ca Ski cervical cancer cell line. Xanthohumol is a prenylated chalcone naturally found in hop plants, previously reported to be an effective anticancer agent in various cancer cell lines. The present study showed that xanthohumol was effective to inhibit proliferation of Ca Ski cells based on IC50values using sulforhodamine B (SRB) assay. Furthermore, cellular and nuclear morphological changes were observed in the cells using phase contrast microscopy and Hoechst/PI fluorescent staining. In addition, 48-hour long treatment with xanthohumol triggered externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells. Additionally, xanthohumol mediated S phase arrest in cell cycle analysis and increased activities of caspase-3, caspase-8, and caspase-9. On the other hand, Western blot analysis showed that the expression levels of cleaved PARP, p53, and AIF increased, while Bcl-2 and XIAP decreased in a dose-dependent manner. Taken together, these findings indicate that xanthohumol-induced cell death might involve intrinsic and extrinsic apoptotic pathways, as well as downregulation of XIAP, upregulation of p53 proteins, and S phase cell cycle arrest in Ca Ski cervical cancer cells. This work suggests that xanthohumol is a potent chemotherapeutic candidate for cervical cancer.



Author(s):  
Xiaoling Wu ◽  
Zhiqin Yang ◽  
Huimin Dang ◽  
Huixia Peng ◽  
Zhijun Dai

Baicalein, a flavonoid derived from the root of Scutellaria baicalensis, has been reported to possess multiple pharmacological activities, such as anticancer and anti-inflammatory properties. This study investigated the effect of baicalein in cervical cancer cells. Cell growth curve and MTT assay were performed and revealed that baicalein inhibited the proliferation of SiHa and HeLa cells in a dose-dependent manner. We further found that baicalein arrested the cell cycle of SiHa and HeLa cells at the G0/G1 phase by suppressing the expression of cyclin D1 through the downregulation of phosphorylated protein kinase B (p-AKT) and phosphorylated glycogen synthase kinase 3β (p-GSK3β) according to FACS assays and Western blotting. Moreover, when CHIR-99021, a GSK3β inhibitor, was added to baicalein-treated SiHa cells, the expression of cyclin D1 was recovered, and cell proliferation was promoted. In conclusion, these data indicated that baicalein suspended the cell cycle at the G0/G1 phase via the downregulation of cyclin D1 through the AKT‐GSK3β signaling pathway and further inhibited the proliferation of SiHa and HeLa cervical cancer cells.



2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Atchara Chothiphirat ◽  
Kesara Nittayaboon ◽  
Kanyanatt Kanokwiroon ◽  
Theera Srisawat ◽  
Raphatphorn Navakanitworakul

Vatica diospyroides Symington is locally known as Chan-Ka-Pho in Thailand. Ancient people have used it as therapeutic plant for cardiac and blood tonic cure. The purpose of this study was to investigate the potential cytotoxicity and selectivity of the extracts from V. diospyroides type SS fruit on cervical cancer HeLa and SiHa cell lines and to examine its underlying mechanism of action. MTT assay revealed that the extracts showed inhibition of cell survival in a dose-dependent manner and exhibited highly cytotoxic activity against both HeLa and SiHa cells with IC50 value less than 20 μg/mL along with less toxicity against L929 cells. Acetone cotyledon extract (ACE) showed the best selectivity index value of 4.47 (HeLa) and 3.51 (SiHa). Distinctive morphological changes were observed in ACE-treated cervical cancer cells contributing to apoptosis action. Flow cytometry analysis with Annexin V-FITC and PI staining precisely indicated that ACE induced apoptosis in HeLa and SiHa cell lines in a dose-dependent manner. Treatment of ACE with half IC50 caused DNA fragmentation and also activated increasing of bax and cleaved caspase-8 protein in HeLa cells after 48 h exposure. The results suggest that ACE has potent and selective cytotoxic effect against cervical cancer cells and the potential to induce bax and caspase-8-dependent apoptosis. Hence, the ACE could be further exploited as a potential lead in cancer treatment.



2016 ◽  
Vol 11 (2) ◽  
pp. 453 ◽  
Author(s):  
Yong Qian Xu ◽  
Jian Hai Zhang ◽  
Xing Sheng Yang

<p class="Abstract">The main objective of the present study was to investigate the anti-tumor activity of corosolic acid in CaSki human cervical cancer cells. Fluorescence and phase contrast microscopic techniques were used to study the effect of the compound on cellular morphology and apoptosis. Results revealed that corosolic acid exerted potent, dose- and time-dependent growth inhibitory effects in CaSki cell proliferation. Cells got detached from one another making clusters of small number of cells floating in the medium. After the cells were treated with 10, 50 and 100 µM concentrations of corosolic acid, cells began to emit orange red fluorescence more heavily at the centre of cells indicating apoptosis. Corosolic acid also induced G2/M cell cycle arrest in a dose-dependent manner. Increasing doses of corosolic acid treatment to these cells resulted in significant and dose-dependent down-regulation of PI3K and Akt protein expressions.</p><p><strong>Video Clip</strong></p><p><a href="https://youtube.com/v/N4EivZECRZE">Western blot assay</a>: 2 min 1 sec  </p>



2018 ◽  
Vol 18 (1) ◽  
pp. 52-54
Author(s):  
Sothing Vashum ◽  
Rabi Raja Singh I ◽  
Saikat Das ◽  
Mohammed Azharuddin KO ◽  
Prabhakaran Vasudevan

AbstractAimDNA double-strand break (DSB) results in the phosphorylation of the protein, H.2AX histone. In this study, the effect of radiotherapy and chemotherapy on DNA DSB in cervical cancer cells is analysed by the phosphorylation of the protein.MethodsThe cervical cancer cells (HeLa cells) were cultured and exposed to ionising radiation. Radiation sensitivity was measured by clonogenic survival fraction after exposing to ionising radiation. Since the phosphorylation of H.2AX declines with time, the DNA damage was quantified at different time points: 1 hour, 3 hours and 1 week after exposed to the radiation. The analysis of γ-H.2AX was done by Western-blot technique. The protein expression was observed at different dose of radiation and combination of both radiation and paclitaxel.ResultsLow-dose hypersensitivity was observed. By 1 week after radiation at 0·5, 0·8 and 2 Gy, there was no expression of phosphorylated H.2AX. Previous experiments on the expression of phosphorylated H.2AX (γ-H.2AX) in terms of foci analysis was found to peak at 1 hour and subsequently decline with time. In cells treated with the DNA damaging agents, the expression of phosphorylated H.2AX decreases in a dose-dependent manner when treated with radiation alone. However, when combined with paclitaxel, at 0·5 Gy, the expression peaked and reduces at 0·8 Gy and slightly elevated at 2 Gy.FindingsIn this study, the peak phosphorylation was observed at 3 hour post irradiation indicating that DSBs are still left unrepaired.



2020 ◽  
Author(s):  
Fang Ren ◽  
Gong Zhang ◽  
Caiyu Li ◽  
Gailing Li ◽  
Yuan Cao ◽  
...  

Abstract Background: Hesperetin, an active compound found in citrus fruits, possesses antiproliferative effects toward several types of cancer cell lines, including cervical cancer. In this study, we explore the antitumor effects of Hesperetin on the human cervical cancer human papilloma virus (HPV)-positive (CaSki and HeLa) and HPV-negative (C-33A) cell lines and further elucidated the underlying mechanisms of this action. Methods: Cell viability and proliferation was measured by the MTT assay and 5-ethynyl-2′-deoxyuridine (EdU) incorporation assay, respectively. dUTP-fluorescein nick end-labeling (TUNEL) staining, Annexin V‑fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining and flow cytometry was used to assess the degree of apoptosis. JC-1 staining assay was used to evaluate the change of mitochondrial membrane potential (ΔΨm) and Western blot assays were used to determine apoptosis-related factors at protein level. Results: Hesperetin (100, 200 and 400 μM) exhibited a significant exclusive inhibitory effect against the growth of HPV-infected CaSki and HeLa cancer cells via induction of apoptosis in a concentration-dependent manner, while it was almost not active in HPV-negative C-33A cancer cells and normal cervix epithelial H8 cells. Moreover, this antitumor effect executed by Hesperetin was associated with disruption of ΔΨm, the release of cytochrome c from mitochondria, activation of pro-apoptotic proteins (Bax, cleaved caspase-3 and caspase-9) and inhibition of anti-apoptotic proteins (Bcl-2). During this process, cleaved caspase-8 remained unchanged. In addition, Hesperetin led to a downregulation of E6 oncoprotein expression and upregulation of tumor suppressor protein p53 level. Conclusions: Collectively, these results implicated that Hesperetin can induce apoptosis of HPV‑positive cervical cancer cells via a mitochondria-mediated intrinsic signaling pathway, together with the repression of E6 and enhancement of p53 protein level, indicating Hesperetin may be considered as a potential candidate for the development of innovative anti-HPV cervical cancer agents.



2018 ◽  
Vol 96 (10) ◽  
pp. 1004-1011 ◽  
Author(s):  
Zita Bognar ◽  
Katalin Fekete ◽  
Rita Bognar ◽  
Aliz Szabo ◽  
Reka A. Vass ◽  
...  

Previously, we found that desethylamiodarone (DEA) may have therapeutic potentiality in bladder cancer. In this study, we determined its effects on human cervical cancer cells (HeLa). Cell viability was evaluated by Muse Cell Count & Viability Assay; cell apoptosis was detected by Muse Annexin V & Dead Cell Assay. Cell cycle was flow cytometrically determined by Muse Cell Cycle Kit and the morphological changes of the cells were observed under a fluorescence microscope after Hoechst 33342 staining. The changes in the expression levels of apoptosis-related proteins in the HeLa cells were assessed by immunoblot. Our results showed that DEA significantly inhibited the proliferation and viability of HeLa cells and induced apoptosis in vitro in dose-dependent and also in cell cycle-dependent manner because DEA induced G0/G1 phase arrest in the HeLa cell line. We found that DEA treatment downregulated the expression of phospho-Akt and phospho-Bad. In addition, DEA could downregulate expression of Bcl-2, upregulate Bax, and induce cytochrome c release. Our results indicate that DEA might have significance as an anti-tumor agent against human cervical cancer.



Author(s):  
Min-Min Yu ◽  
Gen-ju Wang ◽  
Kai-Hua Wu ◽  
Song-Lin Xue ◽  
Li- Li Ju ◽  
...  

Objective: In this study, we aimed to investigate the function of microRNA-373-3p (miR-373-3p) in the pathogenesis of cervical cancer. Methods: Human and mouse cervical cancer cell lines were transfected with miR-373-3p mimic and inhibitor. Cell proliferation and viability were evaluated with Cell Counting Kit-8 (CCK-8) assay and Lactate Dehydrogenase (LDH) assay, respectively. The AKT1-targeting role of miR-373-3p was analyzed by qPCR and Western blot. Finally, a mouse xenograft cervical tumor model was adopted to study the in vivo effect of miR-373-3p on tumor growth and the expression of AKT1. Results: Over-expression of miR-373-3p significantly reduced the proliferation of cervical carcinoma cell line in vitro. In addition, miR-373-3p overexpression also inhibited cervical cancer growth in tumor-bearing mice. Mechanistically, we found that AKT1 gene can be targeted by miR-373-3p. MiR-373-3p mimic decreased the mRNA and protein expression of AKT1, while the miR-373-3p inhibitor increased the level of AKT1 in cervical cancer cells. AKT1 overexpression rescued the proliferation of cervical cancer cells transfected with miR-373-3p. Conclusion: MiR-373-3p can serve as a novel anti-tumor microRNA in cervical cancer by targeting AKT1.



Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3154
Author(s):  
Rajmohamed Mohammed Asik ◽  
Chidhambaram Manikkaraja ◽  
Karuppusamy Tamil Surya ◽  
Natarajan Suganthy ◽  
Archunan Priya Aarthy ◽  
...  

This study reports the synthesis of silver nanoparticles using amino acid L-histidine as a reducing and capping agent as an eco-friendly approach. Fabricated L-histidine-capped silver nanoparticles (L-HAgNPs) were characterized by spectroscopic and microscopic studies. Spherical shaped L-HAgNPs were synthesized with a particle size of 47.43 ± 19.83 nm and zeta potential of −20.5 ± 0.95 mV. Results of the anticancer potential of L-HAgNPs showed antiproliferative effect against SiHa cells in a dose-dependent manner with an IC50 value of 18.25 ± 0.36 µg/mL. Fluorescent microscopic analysis revealed L-HAgNPs induced reactive oxygen species (ROS) mediated mitochondrial dysfunction, leading to activation of apoptotic pathway and DNA damage eventually causing cell death. To conclude, L-HAgNPs can act as promising candidates for cervical cancer therapy.



2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Ebtesam S. Al-Sheddi ◽  
Nida N. Farshori ◽  
Mai M. Al-Oqail ◽  
Shaza M. Al-Massarani ◽  
Quaiser Saquib ◽  
...  

In this study, silver nanoparticles (AgNPs) were synthesized using aqueous extract of Nepeta deflersiana plant. The prepared AgNPs (ND-AgNPs) were examined by ultraviolet-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), and energy dispersive spectroscopy (EDX). The results obtained from various characterizations revealed that average size of synthesized AgNPs was 33 nm and in face-centered-cubic structure. The anticancer potential of ND-AgNPs was investigated against human cervical cancer cells (HeLa). The cytotoxic response was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), neutral red uptake (NRU) assays, and morphological changes. Further, the influence of cytotoxic concentrations of ND-AgNPs on oxidative stress markers, reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest and apoptosis/necrosis was studied. The cytotoxic response observed was in a concentration-dependent manner. Furthermore, the results also showed a significant increase in ROS and lipid peroxidation (LPO), along with a decrease in MMP and glutathione (GSH) levels. The cell cycle analysis and apoptosis/necrosis assay data exhibited ND-AgNPs-induced SubG1 arrest and apoptotic/necrotic cell death. The biosynthesized AgNPs-induced cell death in HeLA cells suggested the anticancer potential of ND-AgNPs. Therefore, they may be used to treat the cervical cancer cells.



Sign in / Sign up

Export Citation Format

Share Document