scholarly journals Drug resistance of pathogens causing nosocomial infection in orthopedics from 2012 to 2017: a 6-year retrospective study

2019 ◽  
Author(s):  
Bin Zhang ◽  
Xiaowei Yang ◽  
Runsheng Guo ◽  
Banglin Xie ◽  
Qi Lai ◽  
...  

Abstract Abstract Background Hospital-acquired infections (HAIs) are an emerging global problem that increases in-hospital mortality, length of stay, and cost. Orthopedics departments experience a particularly high infection rate, partially due to their heavy reliance on invasive medical devices. We performed a 6-year retrospective study to provide valuable insight into appropriate antibiotic use in HAI cases. We also aimed to understand how hospitals could reduce pathogen drug resistance in a population that overuses antibiotics. Methods All data (2012–2017) were obtained from the Hospital Information Warehouse and Clinical Microbiology Laboratory. Results We isolated 1392 pathogen strains from patients admitted to the orthopedics department during 2012–2017. Escherichia coli (14.7%, 204/1392), Enterobacter cloacae (13.9%, 193/1392), and Staphylococcus aureus (11.3%, 157/1392) were the most common pathogens causing nosocomial infections. The dominant gram-negative bacterium was E. coli, with high resistance to ampicillin, levofloxacin, cotrimoxazole, gentamicin, and ciprofloxacin, in that order. E. coli was least resistant to amikacin, cefoperazone-sulbactam, meropenem, imipenem, and piperacillin-tazobactam. The most dominant gram-positive bacterium was S. aureus, highly resistant to penicillin and ampicillin, but not resistant to fluoroquinolones and cotrimoxazole. We also did not observe isolate resistance to nitrofurantoin, linezolid, and vancomycin. Analysis of risk factors related to multidrug-resistant bacteria showed that patients with open fractures were significantly more susceptible to methicillin-resistant S. aureus infections (p < 0.05). Additionally, extended-spectrum β-lactamase-producing E. coli infections occurred significantly more often in patients with degenerative diseases (p < 0.05). Elderly patients tended to be more susceptible to multidrug-resistant bacterial infections, but this outcome was not statistically significant. Conclusions Antimicrobial resistance is a serious problem in orthopedics. To effectively control antimicrobial resistance among pathogens, we advocate extensive and dynamic monitoring of MDR bacteria, coupled with careful use of antibiotics. Key words: hospital acquired infections; orthopedics; drug resistance; multidrug resistance

2020 ◽  
Author(s):  
Xiaowei Yang ◽  
Runsheng Guo ◽  
Banglin Xie ◽  
Qi Lai ◽  
Jiaxiang Xu ◽  
...  

Abstract Background: Hospital-acquired infections (HAIs) are an emerging global problem that increases in-hospital mortality, length of stay, and cost. We performed a 6-year retrospective study to provide valuable insight into appropriate antibiotic use in HAI cases. We also aimed to understand how hospitals could reduce pathogen drug resistance in a population that overuses antibiotics.Methods: All data (2012–2017) were obtained from the Hospital Information Warehouse and Clinical Microbiology Laboratory.Results: We isolated 1392 pathogen strains from patients admitted to the orthopedics department during 2012–2017. Escherichia coli (14.7%, 204/1392), Enterobacter cloacae (13.9%, 193/1392), and Staphylococcus aureus (11.3%, 157/1392) were the most common pathogens causing nosocomial infections. The dominant Gram-negative bacterium was E. coli, with high resistance to ampicillin, levofloxacin, cotrimoxazole, gentamicin, and ciprofloxacin, in that order. E. coli was least resistant to amikacin, cefoperazone-sulbactam. The most dominant Gram-positive bacterium was S. aureus, highly resistant to penicillin and ampicillin, but not resistant to fluoroquinolones and cotrimoxazole. Analysis of risk factors related to multidrug-resistant bacteria showed that patients with open fractures were significantly more susceptible to methicillin-resistant S. aureus infections (p < 0.05). Additionally, extended-spectrum β-lactamase-producing E. coli infections occurred significantly more often in patients with degenerative diseases (p < 0.05). Elderly patients tended to be more susceptible to multidrug-resistant bacterial infections, but this outcome was not statistically significant.Conclusions:Antimicrobial resistance is a serious problem in orthopedics. To effectively control antimicrobial resistance among pathogens, we advocate extensive and dynamic monitoring of MDR bacteria, coupled with careful use of antibiotics.


Author(s):  
Nahla Omer Eltai ◽  
Hadi M. Yassine ◽  
Sara H. Al-Hadidi ◽  
Tahra ElObied ◽  
Asmaa A. Al Thani ◽  
...  

The dissemination of antimicrobial resistance (AMR) bacteria has been associated with the inappropriate use of antibiotics in both humans and animals and with the consumption of food contaminated with resistant bacteria. In particular, the use of antibiotics as prophylactic and growth promotion purposes in food-producing animals has rendered many of the antibiotics ineffective. The increased global prevalence of AMR poses a significant threat to the safety of the world’s food supply. Objectives: This study aims at determining the prevalence of antibiotic-resistant Escherichia coli (E. coli) isolated from local and imported retail chicken meat in Qatar. Methodology: A total of 270 whole chicken carcasses were obtained from three different hypermarket stores in Qatar. A total of 216 E. coli were isolated and subjected to antibiotic susceptibility testing against 18 relevant antibiotics using disc diffusion and micro- dilution methods. Furthermore, extended-spectrum β-lactamase (ESBL) production was determined via a double-disc synergetic test. Isolates harboring colistin resistance were confirmed using multiplex-PCR and DNA sequencing. Results: Nearly 89% (192/216) of the isolates were resistant to at least one antibiotics. In general, isolates showed relatively higher resistance to sulfamethoxazole (62%), tetracycline (59.7%), ampicillin and trimethoprim (52.3%), ciprofloxacin (47.7%), cephalothin, and colistin (31.9%). On the other hand, less resistance was recorded against amoxicillin/clavulanic acid (6%), ceftriaxone (5.1%), nitrofurantoin (4.2%) and piperacillin/tazobactam (4.2%), cefepime (2.3%), meropenem (1.4%), ertapenem (0.9%), and amikacin (0.9%). Nine isolates (4.2%) were ESBL producers. Furthermore, 63.4% were multidrug-resistant (MDR). The percentage of MDR, ESBL producers, and colistin-resistant isolates was significantly higher among local isolates compared to imported chicken samples. Conclusion: We reported a remarkably high percentage of the antibiotic-resistant E. coli in chicken meat sold at retail in Qatar. The high percentage of MDR and colistin isolates is troublesome to the food safety of raw chicken meat and the potential of antibiotic resistance spread to public health. Our findings support the need for the implementation of one health approach to address the spread of antimicrobial resistance and the need for a collaborative solution.


2020 ◽  
Vol 117 (37) ◽  
pp. 22967-22973
Author(s):  
Amanda C. Zangirolami ◽  
Lucas D. Dias ◽  
Kate C. Blanco ◽  
Carolina S. Vinagreiro ◽  
Natalia M. Inada ◽  
...  

Hospital-acquired infections are a global health problem that threatens patients’ treatment in intensive care units, causing thousands of deaths and a considerable increase in hospitalization costs. The endotracheal tube (ETT) is a medical device placed in the patient’s trachea to assist breathing and delivering oxygen into the lungs. However, bacterial biofilms forming at the surface of the ETT and the development of multidrug-resistant bacteria are considered the primary causes of ventilator-associated pneumonia (VAP), a severe hospital-acquired infection for significant mortality. Under these circumstances, there has been a need to administrate antibiotics together. Although necessary, it has led to a rapid increase in bacterial resistance to antibiotics. Therefore, it becomes necessary to develop alternatives to prevent and combat these bacterial infections. One possibility is to turn the ETT itself into a bactericide. Some examples reported in the literature present drawbacks. To overcome those issues, we have designed a photosensitizer-containing ETT to be used in photodynamic inactivation (PDI) to avoid bacteria biofilm formation and prevent VAP occurrence during tracheal intubation. This work describes ETT’s functionalization with curcumin photosensitizer, as well as its evaluation in PDI against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. A significant photoinactivation (up to 95%) against Gram-negative and Gram-positive bacteria was observed when curcumin-functionalized endotracheal (ETT-curc) was used. These remarkable results demonstrate this strategy’s potential to combat hospital-acquired infections and contribute to fighting antimicrobial resistance.


2020 ◽  
Vol 50 (4) ◽  
Author(s):  
Milena da Cruz Costa ◽  
Alexsandra Iarlen Cabral Cruz ◽  
Aline Simões da Rocha Bispo ◽  
Mariza Alves Ferreira ◽  
João Albany Costa ◽  
...  

ABSTRACT: This study aimed to evaluate the microbiological quality and the transmission of multidrug-resistant bacteria in different spices sold in town fairs (local food markets) in the municipalities of Recôncavo Baiano. Samples of black pepper, oregano, and cinnamon were collected over a period of six months and investigated for coliforms at 45 °C, Staphylococcus spp., Staphylococcus aureus, Bacillus spp., Bacillus cereus, Escherichia coli and Salmonella spp. The contamination in the black pepper samples (log 4.66 CFU g-1) was higher (P>0.05), than those of cinnamon (log 2.55 CFU g-1) and oregano (log 2.49 CFU g-1), particularly for B. cereus. E. coli (89%) and Salmonella spp. (67%) were isolated only from black pepper. B. cereus and S. aureus showed greater resistance to β-lactams (penicillin, oxacillin, and cefepime), with approximately 40% of the strains with a multiple antimicrobial resistance (MAR) index of 0.33 (i.e., resistant to three antimicrobials). E. coli was more resistant to ampicillin and Salmonella spp. to nalidixic acid, ampicillin, and ceftriaxone. Salmonella spp. had a MAR index ranging from 0.16 to 0.91 (i.e, resistant to up to 11 antimicrobials), and E. coli to up to 0.58 (i.e., resistant to 7 antimicrobials). In conclusion, the spices sold in the town fairs of Recôncavo Baiano are of low microbiological quality, with the presence of pathogens, of which some display high resistance to antimicrobials that are commonly used for treating foodborne illnesses.


Author(s):  
Fernanda Silva dos Santos ◽  
Luiz Affonso de Paula Junior ◽  
Gabriel Farias Araujo ◽  
Wellington Thadeu de Alcantara Azevedo ◽  
Steven Dutt Ross ◽  
...  

Fecal enterococci are generally not virulent; however, multidrug-resistant strains have emerged as leading causes of hospital-acquired infections. Thus, periodic enterococci monitoring should be included in highly populated cities to control the dissemination of multidrug-resistant strains to the marine environment. This study aimed to quantify enterococci bacteria from water and intertidal sediment samples in a beach located near Rio de Janeiro touristic spots. We also intended to accomplish if enterococci should be included in touristic beaches sanitary monitoring. Toward this approach, we monitored from August to December 2014 fecal indicator bacteria (FIB) at a beach close to some touristic spots through multiple tube method. Although FIB quantification was within sanitary standards of Brazilian legislation, high enterococci densities (=30 MNP.100 mL-1) were detected in the water collected in August. Thus, enterococci monitoring should be included in touristic beaches to avoid the risk of multidrug-resistant bacteria dissemination among swimmers and beachgoers.


Author(s):  
Ziyun Li ◽  
Lulu Shi ◽  
Bianfang Wang ◽  
Xin Wei ◽  
Jian Zhang ◽  
...  

Antimicrobial resistant pathogens display significant public health threats by causing difficulties in clinical treatment of bacterial infection. Antimicrobial resistance (AMR) is transmissible between bacteria, significantly increasing the appearance of antimicrobial resistant pathogens, aggravating the AMR problem. In this work, the dissemination dynamics of AMR from invading multidrug resistant (MDR) Escherichia coli to a community of pathogenic Salmonella enterica was investigated using a continuous culture device, and the behaviors of dissemination dynamics under different levels of antibiotic stress were investigated. Three MDR E. coli invasion events were analyzed in this work: MDR E. coli-S. enterica co-colonization, MDR E. coli invasion after antibiotic treatment of S. enterica, and MDR E. coli invasion before antibiotic treatment of S. enterica. It was found that both horizontal gene transfer (HGT) and vertical gene transfer (VGT) play significant roles in AMR dissemination, although different processes contribute differently under different circumstances; that environmental levels of antibiotics promote AMR dissemination by enhancing HGT rather than leading to selective advantage for resistant bacteria; and that early invasion of MDR E. coli completely and quickly sabotages the effectiveness of antibiotic treatment. These findings contribute to understanding the drivers of AMR dissemination under different antibiotic stress, the detrimental impact of environmental tetracycline contamination, and the danger of nosocomial presence and dissemination of MDR non-pathogens. IMPORTANCE Antimicrobial resistance poses a grave threat to public health and reduces the effectiveness of antimicrobial drugs in treating bacterial infections. Antimicrobial resistance is transmissible, either by horizontal gene transfer between bacteria, or by vertical gene transfer following inheritance of genetic traits. The dissemination dynamics and behaviors of this threat, however, hasn’t been rigorously investigated. In this work, with a continuous culture device, we studied antimicrobial resistance dissemination processes by simulating antimicrobial resistant Escherichia coli invasion to a pathogenic Salmonella enterica community. Using this novel tool, we provide evidence on the drivers of antimicrobial resistance dissemination, on the detrimental impact of environmental antibiotic contamination, and on the danger of antimicrobial resistance in hospitals, even if what harbors the antimicrobial resistance is not a pathogen. This work furthers our understanding on antimicrobial resistance and its dissemination between bacteria, and on antibiotic therapy, our most powerful tool against bacterial infection.


2020 ◽  
Vol 13 (2) ◽  
pp. 204-210 ◽  
Author(s):  
Alicia Neubeiser ◽  
Marzia Bonsignore ◽  
Sascha Tafelski ◽  
Christof Alefelder ◽  
Karin Schwegmann ◽  
...  

2020 ◽  
Vol 83 (9) ◽  
pp. 1584-1591
Author(s):  
HIROMI NAGAOKA ◽  
SHINICHIRO HIRAI ◽  
HIROTAKA MORINUSHI ◽  
SHIRO MIZUMOTO ◽  
KANA SUZUKI ◽  
...  

ABSTRACT Hospital-acquired infections caused by extended-spectrum β-lactamase (ESBL)–producing Escherichia coli are a global problem. Healthy people can carry ESBL-producing E. coli in the intestines; thus, E. coli from healthy people can potentially cause hospital-acquired infections. Therefore, the transmission routes of ESBL-producing E. coli from healthy persons should be determined. A foodborne outbreak of human norovirus (HuNoV) GII occurred at a restaurant in Shizuoka, Japan, in 2018. E. coli O25:H4 was isolated from some of the HuNoV-infected customers. Pulsed-field gel electrophoresis showed that these E. coli O25:H4 strains originated from one clone. Because the only epidemiological link among the customers was eating food from this restaurant, the customers were concurrently infected with E. coli O25:H4 and HuNoV GII via the restaurant food. Whole genome analysis revealed that the E. coli O25:H4 strains possessed genes for regulating intracellular iron and expressing the flagellum and flagella. Extraintestinal pathogenic E. coli often express these genes on the chromosome. Additionally, the E. coli O25:H4 strains had plasmids harboring nine antimicrobial resistance genes. These strains harbored ESBL-encoding blaCTX-M-14 genes on two loci of the chromosome and had higher ESBL activity. Multilocus sequence typing and fimH subtyping revealed that the E. coli O25:H4 strains from the outbreak belonged to the subclonal group, ST131-fimH30R, which has been driving ESBL epidemics in Japan. Because the E. coli O25:H4 strains isolated in the outbreak belonged to a subclonal group spreading in Japan, foods contaminated with ESBL-producing E. coli might contribute to spreading these strains among healthy persons. The isolated E. coli O25:H4 strains produced ESBL and contained plasmids with multiple antimicrobial resistance genes, which may make it difficult to select antimicrobials for treating extraintestinal infections caused by these strains. HIGHLIGHTS


2019 ◽  
Vol 19 (1) ◽  
pp. 86-93 ◽  
Author(s):  
Meng Wang ◽  
Hongyan Wei ◽  
Yaxin Zhao ◽  
Linlin Shang ◽  
Linlin Di ◽  
...  

The frequency of antimicrobial resistance has increased globally due to misuse and overuse of antibiotics, and multi-drug resistant (MDR) bacteria are now recognized as a major cause of hospital-acquired infections (HAI). Our aim was to investigate the prevalence, distribution, and antimicrobial susceptibility rates of MDR bacteria in patients with HAI from a tertiary hospital in China. We retrospectively evaluated all patients with a confirmed diagnosis of bacterial infection at a tertiary general hospital in Jining, for the period between January 2012 and December 2014. The following clinical and demographic data were collected: age, sex, specimens, treatment, microbiology results, and antibiotic resistance patterns of isolates. Bacterial identification and susceptibility testing were performed using VITEK 2 COMPACT system. We screened a total of 15,588 patients, out of which 7579 (48.6%) had an HAI. MDR showed 3223 out of 7579 isolates (42.5%). The most frequently isolated MDR bacteria in patients with HAI were extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (n = 1216/3223, 37.7%), MDR Pseudomonas aeruginosa (n = 627/3223, 19.5%) and MDR Acinetobacter baumannii (n = 588/3223, 18.2%). MDR-HAI were more common in males (2074/3223, 64.4%) and in elderly patients (≥60 years; 1196/3223, 37.1%). Sputum was the main source of MDR isolates (2056/3223, 63.8%). Patients with MDR-HAI were predominantly distributed in different types of intensive care units. MDR strains in our study showed resistance to most current antibiotics. Overall, patients with HAI infections attributed to MDR bacteria were widely distributed in our hospital. Enhanced surveillance of MDR bacteria is critical for guiding the rational use of antibiotics and reducing the incidence of HAI.


Author(s):  
Cristian Pérez-Corrales ◽  
Valeria Peralta-Barquero ◽  
Christopher Mairena-Acuña

Abstract Background The assessment of Hospital-acquired infections due to multidrug-resistant bacteria involves the use of a variety of commercial and laboratory-developed tests to detect antimicrobial resistance genes in bacterial pathogens; however, few are evaluated for use in low- and middle-income countries. Methods We used whole-genome sequencing, rapid commercial molecular tests, laboratory-developed tests and routine culture testing. Results We identified the carriage of the metallo-β-lactamase blaVIM-2 and blaIMP-18 alleles in Carbapenem-Resistant Pseudomonas aeruginosa infections among children in Costa Rica. Conclusions The blaIMP-18 allele is not present in the most frequently used commercial tests; thus, it is possible that the circulation of this resistance gene may be underdiagnosed in Costa Rica.


Sign in / Sign up

Export Citation Format

Share Document