scholarly journals Preclinical and Exploratory Clinical Studies of Novel 68Ga-labeled ᴅ-Peptide Antagonist for PET Imaging of TIGIT Expression in Cancers

Author(s):  
Xiaobo Wang ◽  
Ming Zhou ◽  
Bei Chen ◽  
Huanhuan Liu ◽  
Jianyang Fang ◽  
...  

Abstract Purpose While TIGIT has been propelled under the spotlight as a next-generation target in cancer immunotherapy, anti-TIGIT therapy seems to be promising for a fraction of patients in clinical trials. Therefore, patient stratification is critical for this therapy, which could benefit from a whole-body, non-invasive and quantitative evaluation of TIGIT expression in cancers. In this study, a 68Ga-labeled ᴅ-peptide antagonist, 68Ga-GP12, was developed and validated for PET imaging of TIGIT expression in vitro, in vivo, and first-in-human pilot study. Methods The ᴅ-enantiomer peptide antagonists were modified and radiolabeled with 68Ga. In vitro binding assays were performed in human peripheral blood mononuclear cells (PBMCs) to assess their affinity and specificity. The imaging capacity, biodistribution, pharmacokinetics, and radiation dosimetry were investigated in vivo. Flow cytometry, autoradiography, and immunohistochemical staining were used to confirm the expression of TIGIT ex vivo. The safety and potential of 68Ga-GP12 for PET/CT imaging of TIGIT expression were further evaluated in a first-in-human pilot study with advanced NSCLC. Results 68Ga-labeled ᴅ-peptides were conveniently produced with high radiochemical yields,radiochemical purity and molar activities. In vitro binding assays demonstrated 68Ga-GP12 has favorable affinity and specificity for TIGIT with a KD of 37.28 nM. In vivo and ex vivo studies demonstrated the favorable pharmacokinetics of 68Ga-GP12 for PET imaging of TIGIT expression with high tumor uptake of 4.22 ± 0.68 %ID/g and the tumor-to-muscle ratio of 12.94 ± 2.64 at 60 min post-injection. The primary and metastatic lesions found in the first-in-human studies of 68Ga-GP12 PET/CT imaging were comparable to that in 18F-FDG PET/CT imaging. Moreover, the inhomogenous intra-and-inter-tumoral uptake of 68Ga-GP12 was presented, reflecting the heterogeneity of TIGIT expression levels. Conclusion 68Ga-GP12 is a promising radiotracer for PET imaging of TIGIT expression in cancers, indicating its potential as a potential companion diagnostic for anti-TIGIT therapies.

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7360
Author(s):  
Anthony-David T. Campoy ◽  
Christopher Liang ◽  
Reisha M. Ladwa ◽  
Krystal K. Patel ◽  
Ishani H. Patel ◽  
...  

We report [18F]nifene binding to α4β2* nicotinic acetylcholinergic receptors (nAChRs) in Parkinson’s disease (PD). The study used transgenic Hualpha-Syn(A53T) PD mouse model of α-synucleinopathy for PET/CT studies in vivo and autoradiography in vitro. Additionally, postmortem human PD brain sections comprising of anterior cingulate were used in vitro to assess translation to human studies. Because the small size of mice brain poses challenges for PET imaging, improved methods for radiosynthesis of [18F]nifene and simplified PET/CT procedures in mice were developed by comparing intravenous (IV) and intraperitoneal (IP) administered [18F]nifene. An optimal PET/CT imaging time of 30–60 min post injection of [18F]nifene was established to provide thalamus to cerebellum ratio of 2.5 (with IV) and 2 (with IP). Transgenic Hualpha-Syn(A53T) mice brain slices exhibited 20–35% decrease while in vivo a 20–30% decrease of [18F]nifene was observed. Lewy bodies and α-synuclein aggregates were confirmed in human PD brain sections which lowered the [18F]nifene binding by more than 50% in anterior cingulate. Thus [18F]nifene offers a valuable tool for PET imaging studies of PD.


2019 ◽  
Vol 18 ◽  
pp. 153601211985218 ◽  
Author(s):  
Wojciech G. Lesniak ◽  
Ronnie C. Mease ◽  
Samit Chatterjee ◽  
Dhiraj Kumar ◽  
Ala Lisok ◽  
...  

Expression of programmed cell death ligand 1 (PD-L1) within tumors is an important biomarker for guiding immune checkpoint therapies; however, immunohistochemistry-based methods of detection fail to provide a comprehensive picture of PD-L1 levels in an entire patient. To facilitate quantification of PD-L1 in the whole body, we developed a peptide-based, high-affinity PD-L1 imaging agent labeled with [18F]fluoride for positron emission tomography (PET) imaging. The parent peptide, WL12, and the nonradioactive analog of the radiotracer, 19FPy-WL12, inhibit PD-1/PD-L1 interaction at low nanomolar concentrations (half maximal inhibitory concentration [IC50], 26-32 nM). The radiotracer, [18F]FPy-WL12, was prepared by conjugating 2,3,5,6-tetrafluorophenyl 6-[18F]fluoronicotinate ([18F]FPy-TFP) to WL12 and assessed for specificity in vitro in 6 cancer cell lines with varying PD-L1 expression. The uptake of the radiotracer reflected the PD-L1 expression assessed by flow cytometry. Next, we performed the in vivo evaluation of [18F]FPy-WL12 in mice bearing cancer xenografts by PET imaging, ex vivo biodistribution, and blocking studies. In vivo data demonstrated a PD-L1-specific uptake of [18F]FPy-WL12 in tumors that is reduced in mice receiving a blocking dose. The majority of [18F]FPy-WL12 radioactivity was localized in the tumors, liver, and kidneys indicating the need for optimization of the labeling strategy to improve the in vivo pharmacokinetics of the radiotracer.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii111-ii111
Author(s):  
Lan Hoang-Minh ◽  
Angelie Rivera-Rodriguez ◽  
Fernanda Pohl-Guimarães ◽  
Seth Currlin ◽  
Christina Von Roemeling ◽  
...  

Abstract SIGNIFICANCE Adoptive T cell therapy (ACT) has emerged as the most effective treatment against advanced malignant melanoma, eliciting remarkable objective clinical responses in up to 75% of patients with refractory metastatic disease, including within the central nervous system. Immunologic surrogate endpoints correlating with treatment outcome have been identified in these patients, with clinical responses being dependent on the migration of transferred T cells to sites of tumor growth. OBJECTIVE We investigated the biodistribution of intravenously or intraventricularly administered T cells in a murine model of glioblastoma at whole body, organ, and cellular levels. METHODS gp100-specific T cells were isolated from the spleens of pmel DsRed transgenic C57BL/6 mice and injected intravenously or intraventricularly, after in vitro expansion and activation, in murine KR158B-Luc-gp100 glioma-bearing mice. To determine transferred T cell spatial distribution, the brain, lymph nodes, heart, lungs, spleen, liver, and kidneys of mice were processed for 3D imaging using light-sheet and multiphoton imaging. ACT T cell quantification in various organs was performed ex vivo using flow cytometry, 2D optical imaging (IVIS), and magnetic particle imaging (MPI) after ferucarbotran nanoparticle transfection of T cells. T cell biodistribution was also assessed in vivo using MPI. RESULTS Following T cell intravenous injection, the spleen, liver, and lungs accounted for more than 90% of transferred T cells; the proportion of DsRed T cells in the brains was found to be very low, hovering below 1%. In contrast, most ACT T cells persisted in the tumor-bearing brains following intraventricular injections. ACT T cells mostly concentrated at the periphery of tumor masses and in proximity to blood vessels. CONCLUSIONS The success of ACT immunotherapy for brain tumors requires optimization of delivery route, dosing regimen, and enhancement of tumor-specific lymphocyte trafficking and effector functions to achieve maximal penetration and persistence at sites of invasive tumor growth.


2021 ◽  
Author(s):  
Neil Gerard Quigley ◽  
Katja Steiger ◽  
Sebastian Hoberück ◽  
Norbert Czech ◽  
Maximilian Alexander Zierke ◽  
...  

Abstract PurposeTo develop a new probe for the αvβ6-integrin and assess its potential for PET imaging of carcinomas.MethodsGa-68-Trivehexin was synthesized by trimerization of an optimized αvβ6-integrin selective cyclicnonapeptide on the TRAP chelator core and automated labeling with Ga-68. The tracer wascharacterized by ELISA for activities towards integrin subtypes αvβ6, αvβ8, αvβ3, and α5β1, as well asby cell binding assays on H2009 (αvβ6-positive) and MDA-MB-231 (αvβ6-negative) cells. SCID micebearing subcutaneous xenografts of the same cell lines were used for dynamic (90 min) and static(75 min p.i.) μPET imaging, as well as for biodistribution (90 min p.i.). Structure-activity-relationshipswere established by comparison with the predecessor compound Ga-68-TRAP(AvB6)3. Ga-68-Trivehexin was tested for in-human PET/CT imaging of HNSCC, parotideal adenocarcinoma, andPDAC.ResultsGa-68-Trivehexin showed a high αvβ6-integrin affinity (IC50 = 0.033 nM), selectivity over othersubtypes (IC50-based factors: αvβ8, 188; αvβ3, 82; α5β1, 667), blockable uptake in H2009 cells, andnegligible uptake in MDA-MB-231 cells. Biodistribution and preclinical PET imaging confirmed a hightarget-specific uptake in tumor and a low non-specific uptake in other organs and tissues except theexcretory organs (kidneys and urinary bladder). Preclinical PET corresponded well to in-human results,showing high and persistent uptake in metastatic PDAC and HNSCC (SUVmax = 10–13) as well as inkidneys/urine. Ga-68-Trivehexin enabled PET/CT imaging of small PDAC metastases and showed highuptake in HNSCC but not in tumor-associated inflammation.ConclusionsGa-68-Trivehexin is a valuable probe for imaging of αvβ6-integrin expression in human cancers.


2019 ◽  
Vol 47 (5) ◽  
pp. 1302-1313 ◽  
Author(s):  
Camilla Christensen ◽  
Lotte K. Kristensen ◽  
Maria Z. Alfsen ◽  
Carsten H. Nielsen ◽  
Andreas Kjaer

Abstract Purpose Despite remarkable clinical responses and prolonged survival across several cancers, not all patients benefit from PD-1/PD-L1 immune checkpoint blockade. Accordingly, assessment of tumour PD-L1 expression by immunohistochemistry (IHC) is increasingly applied to guide patient selection, therapeutic monitoring, and improve overall response rates. However, tissue-based methods are invasive and prone to sampling error. We therefore developed a PET radiotracer to specifically detect PD-L1 expression in a non-invasive manner, which could be of diagnostic and predictive value. Methods Anti-PD-L1 (clone 6E11, Genentech) was site-specifically conjugated with DIBO-DFO and radiolabelled with 89Zr (89Zr-DFO-6E11). 89Zr-DFO-6E11 was optimized in vivo by longitudinal PET imaging and dose escalation with excess unlabelled 6E11 in HCC827 tumour-bearing mice. Specificity of 89Zr-DFO-6E11 was evaluated in NSCLC xenografts and syngeneic tumour models with different levels of PD-L1 expression. In vivo imaging data was supported by ex vivo biodistribution, flow cytometry, and IHC. To evaluate the predictive value of 89Zr-DFO-6E11 PET imaging, CT26 tumour-bearing mice were subjected to external radiation therapy (XRT) in combination with PD-L1 blockade. Results 89Zr-DFO-6E11 was successfully labelled with a high radiochemical purity. The HCC827 tumours and lymphoid tissue were identified by 89Zr-DFO-6E11 PET imaging, and co-injection with 6E11 increased the relative tumour uptake and decreased the splenic uptake. 89Zr-DFO-6E11 detected the differences in PD-L1 expression among tumour models as evaluated by ex vivo methods. 89Zr-DFO-6E11 quantified the increase in PD-L1 expression in tumours and spleens of irradiated mice. XRT and anti-PD-L1 therapy effectively inhibited tumour growth in CT26 tumour-bearing mice (p < 0.01), and the maximum 89Zr-DFO-6E11 tumour-to-muscle ratio correlated with response to therapy (p = 0.0252). Conclusion PET imaging with 89Zr-DFO-6E11 is an attractive approach for specific, non-invasive, whole-body visualization of PD-L1 expression. PD-L1 expression can be modulated by radiotherapy regimens and 89Zr-DFO-6E11 PET is able to monitor these changes and predict the response to therapy in an immunocompetent tumour model.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1838 ◽  
Author(s):  
Jessica Bridoux ◽  
Sara Neyt ◽  
Pieterjan Debie ◽  
Benedicte Descamps ◽  
Nick Devoogdt ◽  
...  

Since atherosclerotic plaques are small and sparse, their non-invasive detection via PET imaging requires both highly specific radiotracers as well as imaging systems with high sensitivity and resolution. This study aimed to assess the targeting and biodistribution of a novel fluorine-18 anti-VCAM-1 Nanobody (Nb), and to investigate whether sub-millimetre resolution PET imaging could improve detectability of plaques in mice. The anti-VCAM-1 Nb functionalised with the novel restrained complexing agent (RESCA) chelator was labelled with [18F]AlF with a high radiochemical yield (>75%) and radiochemical purity (>99%). Subsequently, [18F]AlF(RESCA)-cAbVCAM1-5 was injected in ApoE−/− mice, or co-injected with excess of unlabelled Nb (control group). Mice were imaged sequentially using a cross-over design on two different commercially available PET/CT systems and finally sacrificed for ex vivo analysis. Both the PET/CT images and ex vivo data showed specific uptake of [18F]AlF(RESCA)-cAbVCAM1-5 in atherosclerotic lesions. Non-specific bone uptake was also noticeable, most probably due to in vivo defluorination. Image analysis yielded higher target-to-heart and target-to-brain ratios with the β-CUBE (MOLECUBES) PET scanner, demonstrating that preclinical detection of atherosclerotic lesions could be improved using the latest PET technology.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
SiMin He ◽  
MingWei Wang ◽  
YongPing Zhang ◽  
JianMin Luo ◽  
YingJian Zhang

Endocrine monotherapy of breast cancers is generally hampered by the primary/acquired resistance and adverse sides in clinical settings. Herein, advantaging the multitargeting antitumor effects and normal organ-protecting roles of Chinese herbal medicine, the aim of this study was to investigate the enhanced synergistic efficacy of fulvestrant plus Tan IIA combination therapy in ER-positive breast cancers and to monitor the early response by longitudinal 18F-FES PET/CT imaging. The experimental results showed FUL + Tan IIA combination therapy significantly inhibited tumor growth of ER-positive ZR-75-1 tumor xenografts and exhibited distinct antitumor effects at an earlier time point after treatment than did the monotherapy of FUL or Tan IIA. Moreover, 18F-FES PET/CT imaging competently monitored the early response of FUL + Tan IIA combination therapy. The quantitative 18F-FES %ID/gmax in vivo was further confirmed by and correlated well with ERα expression ex vivo. In conclusion, the synergic effect of FUL + Tan IIA combination therapy to ER-positive breast cancers was verified in the preclinical tumor models and the early treatment response could be monitored by 18F-FES PET/CT.


2006 ◽  
Vol 291 (3) ◽  
pp. L466-L472 ◽  
Author(s):  
Martin Witzenrath ◽  
Birgit Ahrens ◽  
Stefanie M. Kube ◽  
Armin Braun ◽  
Heinz G. Hoymann ◽  
...  

Airway hyperresponsiveness (AHR) is a hallmark of bronchial asthma. Important features of this exaggerated response to bronchoconstrictive stimuli have mostly been investigated in vivo in intact animals or in vitro in isolated tracheal or bronchial tissues. Both approaches have important advantages but also certain limitations. Therefore, the aim of our study was to develop an ex vivo model of isolated lungs from sensitized mice for the investigation of airway responsiveness (AR). BALB/c mice were sensitized by intraperitoneal ovalbumin (Ova) and subsequently challenged by Ova inhalation. In vivo AR was measured in unrestrained animals by whole body plethysmography after stimulation with aerosolized methacholine (MCh) with determination of enhanced pause ( Penh). Twenty-four hours after each Penh measurement, airway resistance was continuously registered in isolated, perfused, and ventilated lungs on stimulation with inhaled or intravascular MCh or nebulized Ova. In a subset of experiments, in vivo AR was additionally measured in orotracheally intubated, spontaneously breathing mice 24 h after Penh measurement, and lungs were isolated further 24 h later. Isolated lungs of allergen-sensitized and -challenged mice showed increased AR after MCh inhalation or infusion as well as after specific provocation with aerosolized allergen. AR was increased on days 2 and 5 after Ova challenge and had returned to baseline on day 9. AHR in isolated lungs after aerosolized or intravascular MCh strongly correlated with in vivo AR. Pretreatment of isolated lungs with the β2-agonist fenoterol diminished AR. In conclusion, this model provides new opportunities to investigate mechanisms of AHR as well as pharmacological interventions on an intact organ level.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Kazuko Kobayashi ◽  
Takanori Sasaki ◽  
Fumiaki Takenaka ◽  
Hiromasa Yakushiji ◽  
Yoshihiro Fujii ◽  
...  

Mesothelin (MSLN) is a 40-kDa cell differentiation-associated glycoprotein appearing with carcinogenesis and is highly expressed in many human cancers, including the majority of pancreatic adenocarcinomas, ovarian cancers, and mesotheliomas, while its expression in normal tissue is limited to mesothelial cells lining the pleura, pericardium, and peritoneum. Clone 11-25 is a murine hybridoma secreting monoclonal antibody (mAb) against human MSLN. In this study, we applied the 11-25 mAb toin vivoimaging to detect MSLN-expressing tumors. Inin vitroandex vivoimmunochemical studies, we demonstrated specificity of 11-25 mAb to membranous MSLN expressed on several pancreatic cancer cells. We showed the accumulation of Alexa Fluor 750-labeled 11-25 mAb in MSLN-expressing tumor xenografts in athymic nude mice. Then, 11-25 mAb was labeled with64Cu via a chelating agent DOTA and was used in bothin vitrocell binding assay andin vivopositron emission tomography (PET) imaging in the tumor-bearing mice. We confirmed that64Cu-labeled 11-25 mAb highly accumulated in MSLN-expressing tumors as compared to MSLN-negative ones. The64Cu-labeled 11-25 mAb is potentially useful as a PET probe capable of being used for wide range of tumors, rather than18F-FDG that occasionally provides nonspecific accumulation into the inflammatory lesions.


2019 ◽  
Author(s):  
Mary T. Doan ◽  
Michael D. Neinast ◽  
Erika L Varner ◽  
Kenneth Bedi ◽  
David Bartee ◽  
...  

AbstractAnabolic metabolism of carbon in mammals is mediated via the one and two carbon carriers S-adenosyl methionine and acetyl-coenzyme A (acetyl-CoA). In contrast, anabolic metabolism using three carbon units via propionate is not thought to occur. Mammals are primarily thought to oxidize the 3-carbon short chain fatty acid propionate by shunting propionyl-CoA to succinyl-CoA for entry into the TCA cycle. We found that this may not be absolute and that in mammals one non-oxidative fate of two units of propionyl-CoA is to condense to a six-carbon trans-2-methyl-2-pentenoyl-CoA (2M2PE-CoA). We confirmed this pathway using purified protein extracts provided limited substrates and confirmed the product with a synthetic standard. In whole-body in vivo stable isotope tracing with infusion of 13C-labeled valine achieving steady state, 2M2PE-CoA formed via propionyl-CoA in multiple murine tissues including heart, kidney, and to a lesser degree in brown adipose tissue, liver, and tibialis anterior muscle. Using ex vivo isotope tracing, we found that 2M2PE-CoA formed in human myocardial tissue incubated with propionate to a limited extent. While the complete enzymology of this pathway remains to be elucidated, these results confirm the in vivo existence of at least one anabolic three to six carbon reaction conserved in humans and mice that utilizes three carbons via propionate.Highlights- Synthesis and confirmation of structure 2-methyl-2-pentenoyl-CoA- In vivo fate of valine across organs includes formation of a 6-carbon metabolite from propionyl-CoA- Ex vivo metabolism of propionate in the human heart includes direct anabolism to a 6-carbon product- In both cases, this reaction occurred at physiologically relevant concentrations of propionate and valine- In vitro this pathway requires propionyl-CoA and NADH/NADPH as substrates


Sign in / Sign up

Export Citation Format

Share Document