scholarly journals Oleanolic acid inhibits the proliferation of Hela cells in cervical cancer by regulating the ACSL4 ferroptosis signaling pathway

Author(s):  
Xiaofei Jiang ◽  
Mingqing Shi ◽  
Miao Sui ◽  
Yizhen Yuan ◽  
Shuang Zhang ◽  
...  

Abstract Background: Cervical cancer continues to be the leading cause of cancer deaths among women worldwide. Oleanolic acid (OA) is a naturally occurring substance found in the leaves, fruits, and rhizomes of plants that has anti-cancer activity. Methods: We used tumor-bearing mice as the animal model and Hela cell as cell models. Western blot was used for detecting the expression of proteins in ferroptosis related proteins acyl-CoA synthase long-chain family member 4 (ACSL4), ferritin heavy chain (FTH1), transferrin receptor (TfR1) and glutathione peroxidase 4 (GPX4) in vivo and in vitro. MTT and EdU was for the detection of the viability of Hela cells. Results: In vivo experiments showed that OA significantly reduced the size and mass of cervical cancer tumors. In vitro experiments showed that OA significantly reduced the viability and proliferation capacity of Hela cells. In both in vivo and in vitro assays, OA increased the level of oxidative stress and Fe2+ content, and increased the expression of ferroptosis related proteins. We found high expression of ACSL4 in both xenograft models and cervical carcinoma cells. Meanwhile, knockdown of ACSL4 expression using shRNA in cervical cancer cells significantly increased cell viability and proliferation. In addition, decreased ROS levels and GPX4 were detected in ACSL4 knockdown cervical cancer cells, suggesting that ACSL4 inhibition may contribute to the reduction of ferroptosis within Hela cells and thus improve Hela cell survival. Conclusion: Promotion of ACSL4 dependent ferroptosis through OA may be an effective approach to treat cervical cancer.

2021 ◽  
Vol 11 ◽  
Author(s):  
Sheng-Kai Huang ◽  
Ruo-Xuan Ni ◽  
Wen-Jie Wang ◽  
Di Wang ◽  
Mei Zhao ◽  
...  

ObjectiveTo study the expression of LINC00673 in cervical cancer and cervical intraepithelial neoplasia (CIN) and to explore the role of LINC00673 in the development of cervical cancer.MethodsThe expression of LINC00673 in serum from cervical cancer patients, CIN patients, and healthy participants was detected by RT-qPCR. The function of LINC00673 in cervical cancer cells was analyzed using in vitro and in vivo experiments.ResultsOur results revealed that serum LINC00673 levels were highest in cervical cancer patients, followed by patients with CIN and healthy controls. In vitro experiments demonstrated that overexpression of LINC00673 enhanced the proliferation and cell cycle progression of HeLa and SiHa cells. In vivo experiments showed that the tumor weight and volume of nude mice subcutaneously injected with LINC00673-overexpressing HeLa cells were larger than those of nude mice injected with control cells (P < 0.05). Western blotting showed that cell cycle-related proteins cyclin A2 and cyclin E and interstitial-associated proteins Snail and N-cadherin were upregulated and p53 signaling pathway-related proteins were downregulated in LINC00673-overexpressing HeLa and SiHa cells.ConclusionLINC00673 plays an important role in the development of cervical cancer and may serve as a new therapeutic target for cervical cancer.


2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
Qian-Yu Liu ◽  
Feng Ruan ◽  
Jing-Yuan Li ◽  
Li Wei ◽  
Ping Hu ◽  
...  

Human menstrual blood-derived stem cells (hMBSCs) are a novel type of mesenchymal stem cells (MSCs) that have a high proliferative rate, multilineage differentiation potential, low immunogenicity, and low oncogenicity, making them suitable candidates for regenerative medicine. The therapeutic efficacy of hMBSCs has been demonstrated in some diseases; however, their effects on cervical cancer remain unclear. In the present study, we investigated whether hMBSCs have anticancer properties on cervical cancer cells in vivo and in vitro, which has not yet been reported. In vitro, transwell coculturing experiments revealed that hMBSCs suppress the proliferation and invasion of HeLa cervical cancer cells by inducing G0/G1 cell cycle arrest. In vivo, we established a xenografted BALB/c nude mouse model by subcutaneously coinjecting HeLa cells with hMBSCs for 21 days. We found that hMBSCs significantly decrease the average volume and average weight of xenografted tumors. ELISA, TGF-β1 antibody, and recombinant human TGF-β1 (rhTGF-β1) were used to analyze whether TGF-β1 contributed to cell cycle arrest. We found that hMBSC-secreted TGF-β1 and rhTGF-β1 induced cell cycle arrest and increased the expression of phospho-JNK and phospho-P21 in HeLa cells, which was mostly reversed by TGF-β1 antibody. These results indicate that hMBSCs have antitumor properties on cervical cancer in vitro and in vivo, mediated by the TGF-β1/JNK/p21 signaling pathway. In conclusion, this study suggests that hMBSC-based therapy is promising for the treatment of cervical cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuan Chen ◽  
Yiting Geng ◽  
Junchao Huang ◽  
Dan Xi ◽  
Guoping Xu ◽  
...  

Abstract Background CircRNAs play crucial roles in multiple tumours. However, the functions of most circRNAs in cervical cancer remain unclear. Methods This study collected GSE113696 data from the GEO database to search for differentially expressed circRNAs in cervical cancer. Quantitative reverse transcription PCR was used to detect the expression level of circNEIL3 in cervical cancer cells and tissues. Then, functional experiments in vitro and in vivo were performed to evaluate the effects of circNEIL3 in cervical cancer. Results CircNEIL3 was highly expressed in cervical cancer. In vivo and in vitro experiments verified that circNEIL3 enhanced the proliferation capacity of cervical cancer cells. RNA immunoprecipitation, luciferase reporter assay, pull-down assay, and fluorescent in situ hybridization confirmed the interaction between circNEIL3 and miR-137 in cervical cancer. A luciferase reporter assay showed that circNEIL3 adsorbed miR-137 and upregulated KLF12 to regulate the proliferation of cervical cancer cells. Conclusions CircNEIL3 is an oncogene in cervical cancer and might serve as a ceRNA that competitively binds to miR-137, thereby indirectly upregulating the expression of KLF12 and promoting the proliferation of cervical cancer cells.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Min Deng ◽  
Xiaodong Cai ◽  
Ling Long ◽  
Linying Xie ◽  
Hongmei Ma ◽  
...  

Abstract Background Accumulating evidence indicates that CD36 initiates metastasis and correlates with an unfavorable prognosis in cancers. However, there are few reports regarding the roles of CD36 in initiation and metastasis of cervical cancer. Methods Using immunohistochemistry, we analyzed 133 cervical cancer samples for CD36 protein expression levels, and then investigated the correlation between changes in its expression and clinicopathologic parameters. The effect of CD36 expression on the epithelial–mesenchymal transition (EMT) in cervical cancer cells was evaluated by Western immunoblotting analysis. In vitro invasion and in vivo metastasis assays were also used to evaluate the role of CD36 in cervical cancer metastasis. Results In the present study, we confirmed that CD36 was highly expressed in cervical cancer samples relative to normal cervical tissues. Moreover, overexpression of CD36 promoted invasiveness and metastasis of cervical cancer cells in vitro and in vivo, while CD36 knockdown suppressed proliferation, migration, and invasiveness. We demonstrated that TGF-β treatment attenuated E-cadherin expression and enhanced the expression levels of CD36, vimentin, slug, snail, and twist in si-SiHa, si-HeLa, and C33a–CD36 cells, suggesting that TGF-β synergized with CD36 on EMT via active CD36 expression. We also observed that the expression levels of TGF-β in si-SiHa cells and si-HeLa cells were down-regulated, whereas the expression levels of TGF-β were up-regulated in C33a–CD36 cells. These results imply that CD36 and TGF-β interact with each other to promote the EMT in cervical cancer. Conclusions Our findings suggest that CD36 is likely to be an effective target for guiding individualized clinical therapy of cervical cancer.


2018 ◽  
Vol 96 (10) ◽  
pp. 1004-1011 ◽  
Author(s):  
Zita Bognar ◽  
Katalin Fekete ◽  
Rita Bognar ◽  
Aliz Szabo ◽  
Reka A. Vass ◽  
...  

Previously, we found that desethylamiodarone (DEA) may have therapeutic potentiality in bladder cancer. In this study, we determined its effects on human cervical cancer cells (HeLa). Cell viability was evaluated by Muse Cell Count & Viability Assay; cell apoptosis was detected by Muse Annexin V & Dead Cell Assay. Cell cycle was flow cytometrically determined by Muse Cell Cycle Kit and the morphological changes of the cells were observed under a fluorescence microscope after Hoechst 33342 staining. The changes in the expression levels of apoptosis-related proteins in the HeLa cells were assessed by immunoblot. Our results showed that DEA significantly inhibited the proliferation and viability of HeLa cells and induced apoptosis in vitro in dose-dependent and also in cell cycle-dependent manner because DEA induced G0/G1 phase arrest in the HeLa cell line. We found that DEA treatment downregulated the expression of phospho-Akt and phospho-Bad. In addition, DEA could downregulate expression of Bcl-2, upregulate Bax, and induce cytochrome c release. Our results indicate that DEA might have significance as an anti-tumor agent against human cervical cancer.


2020 ◽  
Vol 10 (9) ◽  
pp. 1567-1572
Author(s):  
Yurong Liu ◽  
Xiaoyan Hou ◽  
Lianwei Lu ◽  
Ruixiang Wang

This study examined the effect of nanosized ferric oxide (Fe3O4) particles coated with different materials on the toxicity to HeLa cervical cancer cells. Magnetic Fe3O4 nanoparticles were prepared using a solventless thermal decomposition method and coated with either PLGA or CA-PLGA star copolymers. The uptake of nanoparticles by HeLa cells was observed by laser confocal microscopy. The toxicity to HeLa cells of Fe3O4 nanoparticles coated with these two materials was determined by the thiazole blue (MTT) method. The particle size of the single Fe3O4 nanoparticles was about 7 nm, and the PLGA and CA-PLGA nanoparticles loaded with Fe3O4 were spherical, with a particle size of about 200 mm and a theoretical drug loading of 10%. When the mass concentration of Fe3O4 nanoparticles is the same (25 pg/mL), the toxicity of Fe3O4-loaded CA-PLGA nanoparticles to HeLa cells is less than that of the corresponding PLGA nanoparticles. Thus, the CA-PLGA star copolymer can reduce the cytotoxicity of magnetic Fe3O4 nanoparticles and offers potential for broad application in vivo.


2014 ◽  
Vol 9 (1) ◽  
pp. 84 ◽  
Author(s):  
Judong Luo ◽  
Wei Zhu ◽  
Yiting Tang ◽  
Han Cao ◽  
Yuanyuan Zhou ◽  
...  

Marine Drugs ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. 532
Author(s):  
Jiajun Ni ◽  
Hualin Feng ◽  
Xiang Xu ◽  
Tingting Liu ◽  
Ting Ye ◽  
...  

Aphrocallistes vastus lectin (AVL) is a C-type marine lectin produced by sponges. Our previous study demonstrated that genes encoding AVL enhanced the cytotoxic effect of oncolytic vaccinia virus (oncoVV) in a variety of cancer cells. In this study, the inhibitory effect of oncoVV-AVL on Hela S3 cervical cancer cells, a cell line with spheroidizing ability, was explored. The results showed that oncoVV-AVL could inhibit Hela S3 cells growth both in vivo and in vitro. Further investigation revealed that AVL increased the virus replication, promote the expression of OASL protein and stimulated the activation of Raf in Hela S3 cells. This study may provide insight into a novel way for the utilization of lection AVL.


Sign in / Sign up

Export Citation Format

Share Document