scholarly journals Cytokines, miRNAs, and Antioxidants as Combined Non-Invasive Biomarkers for Parkinson's Disease

Author(s):  
Amr Ghit ◽  
Hany El Deeb

Abstract Background:Parkinson's disease (PD) is one of the most common long-term degenerative disorders of the CNS that primarily affects the human locomotor system. Owing to the heterogeneity of PD etiology and the lack of appropriate diagnostic tests, blood-based biomarkers became the most promising method for diagnosing PD. Even though various biomarkers for PD have been found, their specificity and sensitivity are not optimum when used alone. Therefore, the aim of this study was directed to evaluate changes in a group of sensitive blood-based biomarkers in the same PD patients compared to healthy individuals. Serum samples were collected from 20 PD patients and 15 age-matched healthy controls. We analyzed serum levels of cytokines (IL10, IL12, and TNF-α), α-synuclein proteins, miRNAs (miR-214, miR-221, and miR-141) and antioxidants (UA, PON1, ARE).Results:Our results showed an increase in sera levels of cytokines in PD patients as well as a positive correlation among them. Also, we found a significant increase in sera levels of α-synuclein protein associated with a decrease in miR-214 which regulates its gene expression. Lastly, we observed a decrease in sera levels of miR-221, miR-141, UA, PON1, and ARE, which have a prominent role against oxidative stress.Conclusion:Because of the many etiologies of PD, a single measure is unlikely to become a useful biomarker. Therefore, to correctly predict disease state and progression, a mix of noninvasive biomarkers is required. Although considerable work has to be done, this study sheds light on the role of certain biomarkers in the diagnosis of PD.

2011 ◽  
Vol 2011 ◽  
pp. 1-6
Author(s):  
Erica Cassani ◽  
Raffaella Cancello ◽  
Ferruccio Cavanna ◽  
Sabrina Maestrini ◽  
Anna Maria Di Blasio ◽  
...  

Patients with advanced Parkinson's disease (PD) experience body weight loss and reductions in the most common cardiovascular risk factors. At present, the pathogenetic mechanisms involved have not been elucidated. Increased serum concentrations of adiponectin, which possesses antiatherogenic and anti-inflammatory properties, are associated with a reduction in cardiovascular risk. The objective of this study was to determine adiponectin serum concentrations in PD patients. Thirty PD patients underwent a full nutritional status assessment, including the determination of adiponectin serum concentrations. Mean ± SD adiponectin concentrations were 9.59 ± 5.9 μg/mL (interquartile range: 5.92–12.9 μg/mL). In PD patients, adiponectin serum levels were similar to those in normal-weight, healthy, young subjects and significantly higher than that in an aged-matched group of morbidly obese subjects. Further studies are warranted to establish the role of adiponectin in the management of PD patients.


Author(s):  
Chandrasekar Ravi

This chapter aims to use the speech signals that are a behavioral bio-marker for Parkinson's disease. The victim's vocabulary is mostly lost, or big gaps are observed when they are talking or the conversation is abruptly stopped. Therefore, speech analysis could help to identify the complications in conversation from the inception of the symptoms of Parkinson's disease in initial phases itself. Speech can be regularly logged in an unobstructed approach and machine learning techniques can be applied and analyzed. Fuzzy logic-based classifier is proposed for learning from the training speech signals and classifying the test speech signals. Brainstorm optimization algorithm is proposed for extracting the fuzzy rules from the speech data, which is used by fuzzy classifier for learning and classification. The performance of the proposed classifier is evaluated using metrics like accuracy, specificity, and sensitivity, and compared with benchmark classifiers like SVM, naïve Bayes, k-means, and decision tree. It is observed that the proposed classifier outperforms the benchmark classifiers.


2020 ◽  
Vol 21 (18) ◽  
pp. 6745
Author(s):  
Federica Murgia ◽  
Luigi Atzori ◽  
Ezio Carboni ◽  
Maria Laura Santoru ◽  
Aran Hendren ◽  
...  

Parkinson’s disease (PD) is considered a synucleinopathy because of the intraneuronal accumulation of aggregated α-synuclein (αSyn). Recent evidence points to soluble αSyn-oligomers (αSynO) as the main cytotoxic species responsible for cell death. Given the pivotal role of αSyn in PD, αSyn-based models are crucial for the investigation of toxic mechanisms and the identification of new therapeutic targets in PD. By using a metabolomics approach, we evaluated the metabolic profile of brain and serum samples of rats infused unilaterally with preformed human αSynOs (HαSynOs), or vehicle, into the substantia nigra pars compacta (SNpc). Three months postinfusion, the striatum was dissected for striatal dopamine (DA) measurements via High Pressure Liquid Chromatography (HPLC) analysis and mesencephalon and serum samples were collected for the evaluation of metabolite content via gas chromatography mass spectrometry analysis. Multivariate, univariate and correlation statistics were applied. A 40% decrease of DA content was measured in the HαSynO-infused striatum as compared to the contralateral and the vehicle-infused striata. Decreased levels of dehydroascorbic acid, myo-inositol, and glycine, and increased levels of threonine, were found in the mesencephalon, while increased contents of fructose and mannose, and a decrease in glycine and urea, were found in the serum of HαSynO-infused rats. The significant correlation between DA and metabolite content indicated that metabolic variations reflected the nigrostriatal degeneration. Collectively, the metabolomic fingerprint of HαSynO-infused rats points to an increase of oxidative stress markers, in line with PD neuropathology, and provides hints for potential biomarkers of PD.


Biomolecules ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 142 ◽  
Author(s):  
Fabio Bello ◽  
Mario Giannella ◽  
Gianfabio Giorgioni ◽  
Alessandro Piergentili ◽  
Wilma Quaglia

Levodopa (LD) is the most effective drug in the treatment of Parkinson’s disease (PD). However, although it represents the “gold standard” of PD therapy, LD can cause side effects, including gastrointestinal and cardiovascular symptoms as well as transient elevated liver enzyme levels. Moreover, LD therapy leads to LD-induced dyskinesia (LID), a disabling motor complication that represents a major challenge for the clinical neurologist. Due to the many limitations associated with LD therapeutic use, other dopaminergic and non-dopaminergic drugs are being developed to optimize the treatment response. This review focuses on recent investigations about non-dopaminergic central nervous system (CNS) receptor ligands that have been identified to have therapeutic potential for the treatment of motor and non-motor symptoms of PD. In a different way, such agents may contribute to extending LD response and/or ameliorate LD-induced side effects.


1995 ◽  
Vol 10 (5) ◽  
pp. 643-649 ◽  
Author(s):  
J. Duarte ◽  
L. E. Clavería ◽  
J. De Pedro-Cuesta ◽  
A. P. Sempere ◽  
F. Coria ◽  
...  

2018 ◽  
Vol 684 ◽  
pp. 205-209 ◽  
Author(s):  
J. Kwiatek-Majkusiak ◽  
M. Geremek ◽  
D. Koziorowski ◽  
R. Tomasiuk ◽  
S. Szlufik ◽  
...  

BMC Neurology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hiroto Ito ◽  
Daichi Yokoi ◽  
Rei Kobayashi ◽  
Hisashi Okada ◽  
Yasukazu Kajita ◽  
...  

Abstract Background Various wearable devices for objectively evaluating motor symptoms of patients with Parkinson’s disease (PD) have been developed. Importantly, previous studies have suggested protective effects of physical activity in PD. However, the relationships between conventional clinical ratings for PD and three-axis accelerometer measures of physical activity (e.g., daily physical activity levels [PAL] or metabolic equivalents of task [METs]) are still unclear, particularly for METs. In the current study, we sought to elucidate these relationships on a daily basis, and to clarify optimal predictors for clinical states on a 30-min basis. Methods Patients who were hospitalized for adjustment of drugs or deep brain stimulation were enrolled. Using waist-worn three-axis accelerometers, PAL and METs parameter data were obtained and compared with UPDRS-3[On] and symptom diary data. We extracted data from the patients’ best and worst days, defined by the best and worst UPDRS-3[On] scores, respectively. Thus, 22 data sets from 11 patients were extracted. We examined the correlations and produced scatter plots to represent the relationships, then investigated which METs parameters and activity patterns were the best predictors for “On” and “dyskinesia”. Results The parameter “mean METs value within the 95–92.5 percentile range on a day (95–92.5 percentile value)” exhibited the strongest correlation with conventional daily clinical ratings (Rho: − 0.799 for UPDRS-3[On], 0.803 for On hours [p < 0.001]). Scatter plots suggested that PAL tended to have higher values in patients with involuntary movement. However, METs parameters focusing on higher METs seemed to alleviate this tendency. We clarified that “time over 2.0 METs” and “time over 1.5 METs” could be predictors for “On” and “dyskinesia” on a 30-min basis, respectively (AUROC: 0.779 and 0.959, 95% CI: 0.733–0.824 and 0.918–1.000). The specificity and sensitivity of the optimal activity pattern for “On” were 0.858 and 0.621. Conclusions This study suggested feasible activity patterns and METs parameters for objective evaluation of motor symptoms on a 30-min or daily basis. Three-axis accelerometer measures focusing on higher METs may be appropriate for evaluating physical activity. Further larger-scale studies are necessary to clarify the validity, reliability, and clinical utility of these objective measures.


Sign in / Sign up

Export Citation Format

Share Document