scholarly journals Optical Modelling of GaAs/GaSb Core-Shell Cone Topped Octagonal Faced Nanopillar Array with Periodic Trapezoidal Textured Cut for High Photon Trapping Efficiency

Author(s):  
Smriti Baruah ◽  
Janmoni Borah ◽  
Joyatri Bora ◽  
Santanu Maity

Abstract Proficiency in light reflectance mitigation is the most crucial factor for high photodetector performance. In this respect light trapping mechanism based on nanostructures or microstructures such as nanopillars, nanocones, nanopyramids have emerged as the most promising candidate for reducing overall light reflectance. This could be attributed to its effective large irradiation area, multiple scattering of incident light as well as increased path length of incident rays in these nanostructures. This paper proposes an optical modelling of a GaAs/GaSb material based vertically oriented core-shell cone topped octagonal shaped nanopillar structure with periodical trapezoidal nanotexturization over it to be deployed over a circular planar detector’s surface of radius 50um. The geometrical analytical investigation of the proposed model exhibits a 0.999 overall absorbance and 0.995A/W photoresponsivity along with 87% EQE at 1um operating wavelength.

Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 267
Author(s):  
Minyu Bai ◽  
Zhuoman Wang ◽  
Jijie Zhao ◽  
Shuai Wen ◽  
Peiru Zhang ◽  
...  

Weak absorption remains a vital factor that limits the application of two-dimensional (2D) materials due to the atomic thickness of those materials. In this work, a direct chemical vapor deposition (CVD) process was applied to achieve 2D MoS2 encapsulation onto the silicon nanopillar array substrate (NPAS). Single-layer 2D MoS2 monocrystal sheets were obtained, and the percentage of the encapsulated surface of NPAS was up to 80%. The reflection and transmittance of incident light of our 2D MoS2-encapsulated silicon substrate within visible to shortwave infrared were significantly reduced compared with the counterpart planar silicon substrate, leading to effective light trapping in NPAS. The proposed method provides a method of conformal deposition upon NPAS that combines the advantages of both 2D MoS2 and its substrate. Furthermore, the method is feasible and low-cost, providing a promising process for high-performance optoelectronic device development.


2012 ◽  
Vol 20 (22) ◽  
pp. 24699 ◽  
Author(s):  
Xing Sheng ◽  
Juejun Hu ◽  
Jurgen Michel ◽  
Lionel C. Kimerling

2012 ◽  
Vol 20 (S4) ◽  
pp. A496 ◽  
Author(s):  
Xing Sheng ◽  
Juejun Hu ◽  
Jurgen Michel ◽  
Lionel C. Kimerling

2013 ◽  
Vol 437 ◽  
pp. 198-201
Author(s):  
Wang Lin Liu ◽  
Guan Yu Lin ◽  
Hsiharng Yang

This study proposed a light trapping module to improve the light path in a solar cell in order to increase its light absorption efficiency. The microlens on a transparent substrate concentrates incident light into several light beams, which it leads into the optical channel on the back side. The optical channel is designed by coating highly reflective metals on the same transparent substrate, then an optical channel opening is made at the light beam focus so the light beams can pass through the optical channel and irradiate the solar cell. The light reflected by the solar cell is reflected again by the metal surface to the upper film of the solar cell, thus, increasing the absorption efficiency of the solar cell and reducing the film thickness of the solar cell to obtain better electrical properties. In this simulation the refractive index of the microlens was set as 1.43, the optical channel was 25 μm and the spacing was 0.27 mm, thus, the simulated absorption efficiency reached over 80%. The feasibility of this study was thus proved.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1254 ◽  
Author(s):  
Yi ◽  
Li ◽  
Wu ◽  
Chen ◽  
Yang ◽  
...  

In this study, we combine the methods of magnetron sputtering, hydrothermal growth, and stepwise deposition to prepare novel ZnO@Ag3PO4 core-shell nanocomposite arrays structure. Through scanning electron microscope (SEM) topography test, energy dispersive spectrometer (EDS) element test and X-ray diffractometry (XRD) component test, we characterize the morphology, element distribution and structural characteristics of ZnO@Ag3PO4 core-shell nanocomposite arrays structure. At the same time, we test the samples for light reflectance, hydrophilicity and photoelectric performance. We find that after deposition of Ag3PO4 on ZnO nanorods, light reflectance decreases. As the time of depositions increases, light reflectance gradually decreases. After the deposition of Ag3PO4, the surface of the sample shows super hydrophilicity, which is beneficial for the photoelectric performance test. Through the optical transient response test, we find that the photo-generated current reaches a maximum when a small amount of Ag3PO4 is deposited. As the time of depositions of Ag3PO4 increases, the photogenerated current gradually decreases. Finally, we conducted an alternating current (AC) impedance test and also verified the correctness of the photocurrent test. Therefore, the structure is expected to be prepared into a photoanode for use in fields such as solar cells.


2018 ◽  
Vol 6 (47) ◽  
pp. 24603-24613 ◽  
Author(s):  
Xing Zhou ◽  
Xiaohui Li ◽  
Dejian Chen ◽  
Danyang Zhao ◽  
Xintang Huang

Ultrathin layered double hydroxide (LDH) nanosheets are a promising candidate as the electrode material for energy storage due to the ultrafast mass diffusion and greater specific surface area.


2020 ◽  
Vol 6 (21) ◽  
pp. eaaz3646 ◽  
Author(s):  
E. Lee ◽  
T. Luo

Optical pulling force (OPF) can make a nanoparticle (NP) move against the propagation direction of the incident light. Long-distance optical pulling is highly desired for nano-object manipulation, but its realization remains challenging. We propose an NP-in-cavity structure that can be pulled by a single plane wave to travel long distances when the spherical cavity wrapping the NP has a refractive index lower than the medium. An electromagnetic multipole analysis shows that NPs made of many common materials can receive the OPF inside a lower index cavity. Using a silica-Au core-shell NP that is encapsulated by a plasmonic nanobubble, we experimentally demonstrate that a single laser can pull the Au NP-in-nanobubble structure for ~0.1 mm. These results may lead to practical applications that can use the optical pulling of NP, such as optically driven nanostructure assembly and nanoswimmers.


1994 ◽  
Vol 336 ◽  
Author(s):  
H.N. Wanka ◽  
E. Lotter ◽  
M.B. Schubert

ABSTRACTThe chemical reactions at the surface of transparent conductive oxides (SnO2, ITO and ZnO) have been studied in silane and hydrogen plasmas by in-situ ellipsometry and by SIMS as well as XPS depth profiling. SIMS and XPS of the interface reveal an increasing amount of metallic phases upon lowering a-Si:H growth rates (controlled by plasma power), indicating that the ion and radical impact is more than compensated by protecting the surface by a rapidly growing a-Si:H film. Hence, optical transmission of TCO films as well as the efficiency of solar cells can be improved if the first few nanometers of the p-layer are grown at higher rates. Comparing a-Si:H deposition on top of different TCOs, reduction effects on ITO and SnO2 have been detected whereas ZnO appeared to be chemically stable. Therefore an additional shielding of the SnO2 surface by a thin ZnO layer has been investigated in greater detail. Small amounts of H are detected close to the ZnO surface by SIMS after hydrogen plasma treatment, but no significant changes occur to the optical and electrical properties. In-situ ellipsometry indicates that a ZnO layer as thin as 20 nm completely protects SnO2 from being reduced to metallic phases. This provides for shielding of textured TCOs, and hence rising solar cell efficiencies, too. Regarding light trapping efficiency we additionally investigated the smoothing of initial TCO texture when growing a-Si:H on top by combining atomic force microscopy and spectroscopie ellipsometry.


2013 ◽  
Vol 114 (6) ◽  
pp. 063103 ◽  
Author(s):  
A. Micco ◽  
A. Ricciardi ◽  
M. Pisco ◽  
V. La Ferrara ◽  
L. V. Mercaldo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document