scholarly journals Consumption of Coconut Oil Affects adipose miRNA Profile in Pigs.

Author(s):  
Maria Oczkowicz ◽  
Klaudia Pawlina-Tyszko ◽  
Małgorzata Świątkiewicz ◽  
Tomasz Szmatoła

Abstract Circulating miRNA molecules are intensively studied for their usefulness as biomarkers of civilization diseases. At the same time, it is known that diet can influence the level of miRNA expression in tissues. Our research aimed to determine how a diet containing various sources of fat (rapeseed oil, beef tallow, coconut oil) and different amounts of cDDGS (corn Dried Distilled Grains with Solubles) affects the miRNA profile in pig fat – the main source of circulating miRNAs. For this purpose, we used Next Generation Sequencing of miRNA libraries. We observed the highest number of differentially expressed miRNAs in the samples from animals that were fed with coconut oil in the diet compared to all other treatments. In contrary, cDDGS appeared to have little effect on miRNA expression. We propose a subset of di-et-related, adipose-specific, conservative miRNAs among mammals, namely: ssc-miR-99b, ssc-miR-4334-3p, ssc-miR-146b, ssc-miR-23a. Moreover, we observed that several miRNAs regulated by dietary fats are considered as biomarkers in human and animal diseases.

1997 ◽  
Vol 77 (4) ◽  
pp. 605-620 ◽  
Author(s):  
Elke A. Trautwein ◽  
Angelika Kunath-Rau ◽  
Juliane Dietrich ◽  
Stephan Drusch ◽  
Helmut F. Erbersdobler

Effects of different dietary fats on plasma, hepatic and biliary lipids were determined in male golden Syrian hamsters (Mesocricetus auratus) fed on purified diets for 7 weeks. Diets were made by blending different fats containing characteristic fatty acids: butter (14:0 + 16:0), palm stearin (16:0), coconut oil (12:0 + 14:0), rapeseed oil (18:1), olive oil (18:l) and sunflowerseed oil (18:2). In all diets except the sunflowerseed oil diet dietary 18:2 was held constant at 2% energy. Total fat supplied 12% of energy and cholesterol was added at 4 g/kg diet. Plasma cholesterol and triacyglycerol concentrations were increased by dietary cholesterol. After 7 weeks, plasma cholesterol concentrations were highest with the palm Stearin, coconut oil and olive oil diets (8·9, 8·9 and 9·2 mmol/l) and lowest with the rapeseed oil and sdowerseed oil diets (6·7 and 5·5 mmol/l) while the butter diet was intermediate (8·5 mmol/l). Hepatic cholesterol concentration was highest in hamsters fed on the olive oil diet and lowest with the palm stearin diet (228v. 144 µmol/g liver). Biliary lipids, lithogenic index and bile acid profile of the gall-bladder bile did not differ significantly among the six diets. Although the gallstone incidence was generally low in this study, three out of 10 hamsters fed on the palm stearin diet developed cholesterol gallstones. In contrast, no cholesterol gallstones were found with the other diets. Rapeseed and dowerseed oils caused the lowest plasma cholesterol and triacyglycerol concentrations whereas olive oil failed to demonstrate a cholesterol-lowering effect compared with diets rich in saturated fatty acids. Since 18:2 was kept constant at 2% of energy in all diets, the different responses to rapeseed and olive oils could possibly be attributed to their different contents of 16:0 (5·6 %v. 12·8% respectively). Other possible explanations are discussed.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2438-2438 ◽  
Author(s):  
Dennis Gerloff ◽  
Alexander Arthur Wurm ◽  
Jens-Uwe Hartmann ◽  
Nadja Hilger ◽  
Anne-Marie Müller ◽  
...  

Abstract Up to 30% of all acute myeloid leukemias (AMLs) are associated with an activating mutation in the FMS-like tyrosine kinase 3 receptor (FLT3). Two distinct groups of FLT3 mutations are found: (1) the most common are internal tandem duplications (ITDs) of the FLT3 juxtamembrane region, and (2) point mutations within the tyrosine kinase domains (TKDs). While FLT3-TKD mutations seem to have no prognostic relevance in AML, patients bearing an FLT3-ITD mutation have a significantly worse outcome compared with AML patients with wild-type FLT3 (FLT3-WT). MicroRNAs (miRNAs) are small (~22 bp) noncoding RNAs, which regulate protein expression posttranscriptionally by recruitment of the RNA-induced silencing complex (RISC) to the 3′-untranslated region (3′-UTR) of target mRNAs. We and others have shown that miRNAs are crucial regulators in myeloid differentiation and in leukemogenesis. Furthermore, it was shown that several miRNAs have a prognostic impact. Hence, we hypothesized that the different FLT3 mutations lead to altered miRNA expression. To find different expression patterns of miRNAs, we performed next generation sequencing of normal karyotype bone marrow patient samples with FLT3-WT (n=5), FLT3-TKD (n=3) and FLT3-ITD (n=3). Sequencing was performed with an Illumina HighScan-SQ sequencer using version 3 chemistry and flowcell according to the instructions of the manufacturer. For normalization the method of trimmed mean of M values (TMM) was used. Data analyses were performed using the Qlucore Omics Explorer 3.1. In a multi group analyses of miRNA expression pattern, we found 17 significant differentially expressed miRNAs (p ≤ 0.05). The expression of 6 miRNAs (miR-10a-5p, miR-10a-3p, miR-18a-5p, let-7b-3p, miR-155-5p and miR-576-5p) was increased only in the FLT3-ITD associated patient samples. In the FLT3-WT samples we found 8 miRNAs (miR-141-3p, 342-3p, 181a-2-3p, 374b-5p, 30b-5p, 29c-3p, 23b-3p and 125a-3p) with an increased expression. The miR-92a-3p showed an enhanced expression in FLT3-WT and FLT3-ITD patient samples. The multi group analyses showed only 2 miRNAs (miR-3615 and miR-193b-3p) induced in FLT3-TKD patient samples. The two FLT3-ITD induced miRNAs, miR-10a-5p and miR-155-5p were the most abundant and most differentially expressed miRNAs in the screen. From our data we hypothesize that miR-155 and miR-10a could play an important role in disease progression and clinical outcome of FLT3-ITD induced AMLs To analyze a block of miR-155 in FLT3-ITD driven AML in vivo, we transfected 32D cells, stably expressing human FLT3-ITD, with unspecific scramble or miR-155 specific locked nucleic acids (LNAs (Exiqon)). 24h after transfection, we injected 1x106 cells into C3H mice (scr. n=5; LNA-155 n=5). All animals rapidly developed a leukemia like disease with hepatosplenomegaly. The animals died 17 - 21 days after 32DFLT3-ITD cell injection. We could not observe a difference in survival. In flow cytometry analysis of the peripheral blood we found a strong increase of human FLT3 (huCD135) expressing cells (32DFLT3-ITD) 1 to 2 days before the mice died. At death of the animals we analyzed the accumulation of leukemic cells (32DFLT3-ITD) in bone marrow, spleen and liver by flow cytometry for the human FLT3 (huCD135). Here we could observe a significantly (p≤ 0.05) reduced number of leukemic cells in the bone marrow of the mice with the LNA-155 transfected 32DFLT3-ITD cells in comparison to the group with the scramble transfected 32D cells. In spleen we could not observe a difference in accumulation of leukemic cells, but in the liver we could show a tendentially reduced accumulation of 32DFLT3-ITD cells transfected with LNA-155. The next generation sequencing screen gives insight into the altered miRNA expression pattern of FLT3-WT, FLT3-TKD and FLT3-ITD related AMLs. The miR-10a-5p and miR-155-5p are highly expressed in FLT3-ITD associated AMLs. The block of the FLT3-ITD induced miR-155 in vivo significantly reduces the accumulation of leukemic cells in the bone marrow of transplanted mice. The results give the evidence that miR-155 could be a novel therapeutic target in FLT3-ITD associated AML. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 72 (4) ◽  
pp. 535-541
Author(s):  
Hui Yu ◽  
Hai Hu ◽  
Zhanli Wang

Hypertension is associated with impaired vascular endothelial function. However, the regulatory mechanisms of vascular dysfunction in rats with renovascular hypertension (RVH) remain poorly understood. In this study, the 2-kidney- 1-clip (2K1C) hypertensive rat model was utilized. Next-generation sequencing was then used to detect microRNA (miRNA) expression profiling in the arteries of 2K1C rats. We identified 17 miRNAs that were differentially expressed in the 2K1C group compared with the sham group, of which 9 were downregulated and 8 were upregulated. These differentially expressed miRNAs were found to be associated with immune/inflammatory and metabolic pathways, which are involved in vascular dysfunction. Treatment with losartan maintained the expression of the differentially expressed miRNAs, miR-31a-5p and miR-142-3p, and the levels of TNF-?, IL-1?, IL-6 and MCP-1, indicating that the differentially expressed miRNAs and their associated immune/inflammatory pathways play a pivotal role in the modulation of the vascular dysfunction in 2K1C rats. Our study provides valuable information about miRNA expression in the arteries of 2K1C rats, expanding our understanding of the complex molecular mechanisms underlying the vascular dysfunction in rats with RVH.


2021 ◽  
Author(s):  
Zhengyan Guo ◽  
Yue Tang ◽  
Wei Tang ◽  
Yihua Chen

Heptose-containing natural products hold great potential as drugs for the treatment of human and animal diseases.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 366
Author(s):  
Raisa Rodrigues Santos Rios ◽  
Maria Clara Alves Santarém ◽  
Karlos Antônio Lisboa Ribeiro Júnior ◽  
Breno Araujo de Melo ◽  
Sybelle Georgia Mesquita da Silva ◽  
...  

The species of the Culicoides genus are hematophagous, and some of them are vectors of important human and animal diseases. This group of insects is distributed worldwide, varying according to local species. Knowledge of the geographic distribution of specific species is crucial for the development and implementation of control strategies. The aim of this work was to investigate the occurrence of Culicoides in the state of Alagoas in northeast Brazil. Midges were captured with CDC light traps, and their identification and morphological analyses were performed by the Ceratopogonidae Collection of the Oswaldo Cruz Foundation (FIOCRUZ/CCER) in Rio de Janeiro, Brazil. Morphological analyses were performed using the key to Culicoides from the guttatus group and comparison with other deposited specimens. DNA sequencing, genetic analysis and comparison with sequences in the Genbank database, confirmed the identification of the flies as Culicoides insignis. This was the first formal report of C. insignis being found in Alagoas.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Emilia Bagnicka ◽  
Ewelina Kawecka-Grochocka ◽  
Klaudia Pawlina-Tyszko ◽  
Magdalena Zalewska ◽  
Aleksandra Kapusta ◽  
...  

AbstractMicroRNAs (miRNAs) are short, non-coding RNAs, 21–23 nucleotides in length which are known to regulate biological processes that greatly impact immune system activity. The aim of the study was to compare the miRNA expression in non-infected (H) mammary gland parenchyma samples with that of glands infected with coagulase-positive staphylococci (CoPS) or coagulase-negative staphylococci (CoNS) using next-generation sequencing. The miRNA profile of the parenchyma was found to change during mastitis, with its profile depending on the type of pathogen. Comparing the CoPS and H groups, 256 known and 260 potentially new miRNAs were identified, including 32 that were differentially expressed (p ≤ 0.05), of which 27 were upregulated and 5 downregulated. Comparing the CoNS and H groups, 242 known and 171 new unique miRNAs were identified: 10 were upregulated (p ≤ 0.05), and 2 downregulated (p ≤ 0.05). In addition, comparing CoPS with H and CoNS with H, 5 Kyoto Encyclopedia of Genes and Genomes pathways were identified; in both comparisons, differentially-expressed miRNAs were associated with the bacterial invasion of epithelial cells and focal adhesion pathways. Four gene ontology terms were identified in each comparison, with 2 being common to both immune system processes and signal transduction. Our results indicate that miRNAs, especially miR-99 and miR-182, play an essential role in the epigenetic regulation of a range of cellular processes, including immunological systems bacterial growth in dendritic cells and disease pathogenesis (miR-99), DNA repair and tumor progression (miR-182).


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 764
Author(s):  
Jaroslav Nunvar ◽  
Lucie Pagacova ◽  
Zuzana Vojtechova ◽  
Nayara Trevisan Doimo de Azevedo ◽  
Jana Smahelova ◽  
...  

Squamous cell carcinomas (SCCs) in the anogenital and head and neck regions are associated with high-risk types of human papillomaviruses (HR-HPV). Deregulation of miRNA expression is an important contributor to carcinogenesis. This study aimed to pinpoint commonly and uniquely deregulated miRNAs in cervical, anal, vulvar, and tonsillar tumors of viral or non-viral etiology, searching for a common set of deregulated miRNAs linked to HPV-induced carcinogenesis. RNA was extracted from tumors and nonmalignant tissues from the same locations. The miRNA expression level was determined by next-generation sequencing. Differential expression of miRNAs was calculated, and the patterns of miRNA deregulation were compared between tumors. The total of deregulated miRNAs varied between tumors of different locations by two orders of magnitude, ranging from 1 to 282. The deregulated miRNA pool was largely tumor-specific. In tumors of the same location, a low proportion of miRNAs were exclusively deregulated and no deregulated miRNA was shared by all four types of HPV-positive tumors. The most significant overlap of deregulated miRNAs was found between tumors which differed in location and HPV status (HPV-positive cervical tumors vs. HPV-negative vulvar tumors). Our results imply that HPV infection does not elicit a conserved miRNA deregulation in SCCs.


2022 ◽  
Vol 12 ◽  
Author(s):  
Sung Hye Kim ◽  
David A. MacIntyre ◽  
Lynne Sykes ◽  
Maria Arianoglou ◽  
Phillip R. Bennett ◽  
...  

MicroRNAs (miRNAs) can exhibit aberrant expression under different physiological and pathological conditions. Therefore, differentially expressed circulating miRNAs have been a focus of biomarker discovery research. However, the use of circulating miRNAs comes with challenges which may hinder the reliability for their clinical application. These include varied sample collection protocols, storage times/conditions, sample processing and analysis methods. This study focused on examining the effect of whole blood holding time on the stability of plasma miRNA expression profiles. Whole blood samples were collected from healthy pregnant women and were held at 4°C for 30 min, 2 h, 6 h or 24 h prior to processing for plasma isolation. Plasma RNA was extracted and the expression of 179 miRNAs were analyzed. Unsupervised principal component analysis demonstrated that whole blood holding time was a major source of variation in miRNA expression profiles with 53 of 179 miRNAs showing significant changes in expression. Levels of specific miRNAs previously reported to be associated with pregnancy-associated complications such as hsa-miR-150-5p, hsa-miR-191-5p, and hsa-miR-29a-3p, as well as commonly used endogenous miRNA controls, hsa-miR-16-5p, hsa-miR-25-3p, and hsa-miR-223-3p were significantly altered with increase in blood holding time. Current protocols for plasma-based miRNA profiling for diagnostics describe major differences in whole blood holding periods ranging from immediately after collection to 26 h after. Our results demonstrate holding time can have dramatic effects on analytical reliability and reproducibility. This highlights the importance of standardization of blood holding time prior to processing for plasma in order to minimize introduction of non-biological variance in miRNA profiles.


Sign in / Sign up

Export Citation Format

Share Document