scholarly journals Transcriptome Profiling of Cellular Response to Kanamycin B in E.coli

Author(s):  
Yaowen Chang ◽  
Xuhui Zhang ◽  
Alastair I.H. Murchie ◽  
Dongrong Chen

Abstract Background: Aminoglycosides are not only antibiotics but also have wider and diverse non-antibiotic cellular functions. No genome-wide study focusing on the changes of gene expression by aminoglycosides in E.coli has been reported. Here, we report transcriptome-profiling analysis of E.coli with or without Kanamycin B to elucidate the understanding of non-antibiotic cellular functions. Results: The differentially expressed genes (DEGs) at two given concentrations of Kanamycin B were identified. The results indicated that Kanamycin B does not affect the expression of the majority of the genes. Functional classification of the DEGs revealed that they were mainly related to microbial metabolism including two-component systems, biofilm formation, oxidative phosphorylation and nitrogen metabolism in diverse environments. Conclusions: Kanamycin B treatment causes diverse changes in the transcriptional profile of E. coli JM109, that are not directly associated with the antibiotic activity of Kanamycin B.

2021 ◽  
Vol 9 (3) ◽  
pp. 485
Author(s):  
Ke Fan ◽  
Qiao Cao ◽  
Lefu Lan

BfmR is a response regulator that modulates diverse pathogenic phenotypes and induces an acute-to-chronic virulence switch in Pseudomonas aeruginosa, an important human pathogen causing serious nosocomial infections. However, the mechanisms of action of BfmR remain largely unknown. Here, using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), we showed that 174 chromosomal regions of P. aeruginosa MPAO1 genome were highly enriched by coimmunoprecipitation with a C-terminal Flag-tagged BfmR. Integration of these data with global transcriptome analyses revealed that 172 genes in 106 predicted transcription units are potential targets for BfmR. We determined that BfmR binds to and modulates the promoter activity of genes encoding transcriptional regulators CzcR, ExsA, and PhoB. Intriguingly, BfmR bound to the promoters of a number of genes belong to either CzcR or PhoB regulon, or both, indicating that CzcRS and PhoBR two-component systems (TCSs) deeply feed into the BfmR-mediated regulatory network. In addition, we demonstrated that phoB is required for BfmR to promote the biofilm formation by P. aeruginosa. These results delineate the direct BfmR regulon and exemplify the complexity of BfmR-mediated regulation of cellular functions in P. aeruginosa.


mSystems ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Kumari Sonal Choudhary ◽  
Julia A. Kleinmanns ◽  
Katherine Decker ◽  
Anand V. Sastry ◽  
Ye Gao ◽  
...  

ABSTRACT Escherichia coli uses two-component systems (TCSs) to respond to environmental signals. TCSs affect gene expression and are parts of E. coli’s global transcriptional regulatory network (TRN). Here, we identified the regulons of five TCSs in E. coli MG1655: BaeSR and CpxAR, which were stimulated by ethanol stress; KdpDE and PhoRB, induced by limiting potassium and phosphate, respectively; and ZraSR, stimulated by zinc. We analyzed RNA-seq data using independent component analysis (ICA). ChIP-exo data were used to validate condition-specific target gene binding sites. Based on these data, we do the following: (i) identify the target genes for each TCS; (ii) show how the target genes are transcribed in response to stimulus; and (iii) reveal novel relationships between TCSs, which indicate noncognate inducers for various response regulators, such as BaeR to iron starvation, CpxR to phosphate limitation, and PhoB and ZraR to cell envelope stress. Our understanding of the TRN in E. coli is thus notably expanded. IMPORTANCE E. coli is a common commensal microbe found in the human gut microenvironment; however, some strains cause diseases like diarrhea, urinary tract infections, and meningitis. E. coli’s two-component systems (TCSs) modulate target gene expression, especially related to virulence, pathogenesis, and antimicrobial peptides, in response to environmental stimuli. Thus, it is of utmost importance to understand the transcriptional regulation of TCSs to infer bacterial environmental adaptation and disease pathogenicity. Utilizing a combinatorial approach integrating RNA sequencing (RNA-seq), independent component analysis, chromatin immunoprecipitation coupled with exonuclease treatment (ChIP-exo), and data mining, we suggest five different modes of TCS transcriptional regulation. Our data further highlight noncognate inducers of TCSs, which emphasizes the cross-regulatory nature of TCSs in E. coli and suggests that TCSs may have a role beyond their cognate functionalities. In summary, these results can lead to an understanding of the metabolic capabilities of bacteria and correctly predict complex phenotype under diverse conditions, especially when further incorporated with genome-scale metabolic models.


2013 ◽  
Vol 288 (38) ◽  
pp. 27434-27443 ◽  
Author(s):  
Sebastien Hannedouche ◽  
Valerie Beck ◽  
Juliet Leighton-Davies ◽  
Martin Beibel ◽  
Guglielmo Roma ◽  
...  

TLQP-21, a peptide derived from VGF (non-acronymic) by proteolytic processing, has been shown to modulate energy metabolism, differentiation, and cellular response to stress. Although extensively investigated, the receptor for this endogenous peptide has not previously been described. This study describes the use of a series of studies that show G protein-coupled receptor-mediated biological activity of TLQP-21 signaling in CHO-K1 cells. Unbiased genome-wide sequencing of the transcriptome from responsive CHO-K1 cells identified a prioritized list of possible G protein-coupled receptors bringing about this activity. Further experiments using a series of defined receptor antagonists and siRNAs led to the identification of complement C3a receptor-1 (C3AR1) as a target for TLQP-21 in rodents. We have not been able to demonstrate so far that this finding is translatable to the human receptor. Our results are in line with a large number of physiological observations in rodent models of food intake and metabolic control, where TLQP-21 shows activity. In addition, the sensitivity of TLQP-21 signaling to pertussis toxin is consistent with the known signaling pathway of C3AR1. The binding of TLQP-21 to C3AR1 not only has effects on signaling but also modulates cellular functions, as TLQP-21 was shown to have a role in directing migration of mouse RAW264.7 cells.


2017 ◽  
Author(s):  
S. Cardinale

AbstractThe study presents an analysis of how different cellular functions link cell size to the expression of synthetic genes inE. coli. The Size-Expression interaction was mapped with a two-gene genetic probe across 3800 single-gene deletion strains. Through regression analysis, expression-specific effects and gene-specific effects were derived from size effects and generic expression effects, respectively. The entire compendium of cell functions broadly mapped to four systems of distinct primary influence on the Size-Expression map. Specifically, membrane structural components primarily affected size, whereas protein and RNA stability primarily affected gene expression. In addition, major Size-Expression shifts showed no substantial gene-specific effects unless they were mediated by key components of the protein synthesis apparatus.Subject Category:Synthetic Biology


DNA Research ◽  
2009 ◽  
Vol 16 (4) ◽  
pp. 237-247 ◽  
Author(s):  
K. Ishida ◽  
Y. Niwa ◽  
T. Yamashino ◽  
T. Mizuno

2020 ◽  
Author(s):  
Kumari Sonal Choudhary ◽  
Julia A. Kleinmanns ◽  
Katherine Decker ◽  
Anand V Sastry ◽  
Ye Gao ◽  
...  

AbstractEscherichia coli uses two-component systems (TCSs) to respond to environmental signals. TCSs affect gene expression and are parts of E. coli’s global transcriptional regulatory network (TRN). Here, we identified the regulons of five TCSs in E. coli MG1655: BaeSR and CpxAR, which were stimulated by ethanol stress; KdpDE and PhoRB, induced by limiting potassium and phosphate, respectively; and ZraSR, stimulated by zinc. We analyzed RNA-seq data using independent component analysis (ICA). ChIP-exo data was used to validate condition-specific target gene binding sites. Based on this data we (1) identify the target genes for each TCS; (2) show how the target genes are transcribed in response to stimulus; and (3) reveal novel relationships between TCSs, which indicate non-cognate inducers for various response regulators, such as BaeR to iron starvation, CpxR to phosphate limitation, and PhoB and ZraR to cell envelope stress. Our understanding of the TRN in E. coli is thus notably expanded.ImportanceE. coli is a common commensal microbe found in human gut microenvironment; however, some strains cause diseases like diarrhea, urinary tract infections and meningitis. E. coli’s two-component system (TCS) modulates target gene expression, specially related to virulence, pathogenesis and anti-microbial peptides, in response to environmental stimuli. Thus, it is of utmost importance to understand the transcriptional regulation of the TCSs to infer its environmental adaptation and disease pathogenicity. Utilizing a combinatorial approach integrating RNAseq, independent component analysis, ChIP-exo and data mining, we show that TCSs have five different modes of transcriptional regulation. Our data further highlights non-cognate inducers of TCSs emphasizing cross-regulatory nature of TCSs in E. coli and suggests that TCSs may have a role beyond their cognate functionalities. In summary, these results when further incorporated with genome scale metabolic models can lead to understanding of metabolic capabilities of bacteria and correctly predict complex phenotype under diverse conditions.


2020 ◽  
Author(s):  
Annie I. Chen ◽  
Jun Zhu ◽  
Mark Goulian

AbstractPolymyxins are a class of cyclic peptides with antimicrobial activity against Gram-negative bacteria. Resistance to these compounds is often mediated by pathways that also confer resistance to host antimicrobial peptides. In Enterobacteriaceae, the PhoQ/PhoP and PmrB/PmrA two-component systems regulate many of the genes associated with these resistance mechanisms. In K. pneumoniae, spontaneous polymyxin resistance is frequently acquired through inactivation of the gene mgrB, which encodes a negative regulator of PhoQ. However, this resistance mechanism has not been reported in other genera of Enterobacteriaceae, despite the presence of mgrB among many members of this family. In addition, the frequency of developing spontaneous resistance to the antimicrobial peptide polymyxin through chromosomal mutations is much higher in Klebsiella compared to Salmonella or E. coli. Here we show that in K. pneumoniae, PmrD is not required for polymyxin resistance arising from inactivation of mgrB. In addition, we show that in E. coli, the protein PmrD can activate PmrA under certain conditions. Our results suggest that the importance of PmrD connector activity in polymyxin resistance depends on both the network organization and on the environmental conditions associated with PmrB stimulation.


Sign in / Sign up

Export Citation Format

Share Document