scholarly journals Diverse Response Diversity in Pollinators: Implications to the Resilience of Pollination Services in Buckwheat

Author(s):  
Tadashi Miyashita ◽  
Shota Hayashi ◽  
Hisatomo Taki

Abstract Response diversity to environmental change among species is important for the maintenance of ecosystem services, but response diversity to changes in multiple environmental parameters is largely unexplored. Here, we examined how insect visitations to buckwheat flowers differ among species groups in response to changes in multiple weather variables and landscape structures.We found differences in responses to changes in weather conditions among insect taxonomic groups visiting buckwheat flowers. Specifically, beetles, butterflies, and wasps were more active in sunny and/or high-temperature conditions, whereas ants and flies showed the opposite pattern. Furthermore, responses to weather conditions differed between large and small insects, which agreed with the expectation that optimal temperature for insect activity has a positive association with body size. Response diversity per se was also diverse. For instance, large insects were responsive to temperatures more than small insects while smaller insects were responsive to sunshine duration more than large insects. Responses to spatial variables also differed; large insects were more abundant in fields with surrounding forests and mosaic habitats, whereas small insects were not. We suggest that the “diversity” in “response diversity,” which is a higher-order response diversity, should be a focus of future studies of the biodiversity–ecosystem service relationships.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1202
Author(s):  
Miguel Tradacete ◽  
Carlos Santos ◽  
José A. Jiménez ◽  
Fco Javier Rodríguez ◽  
Pedro Martín ◽  
...  

This paper describes a practical approach to the transformation of Base Transceiver Stations (BTSs) into scalable and controllable DC Microgrids in which an energy management system (EMS) is developed to maximize the economic benefit. The EMS strategy focuses on efficiently managing a Battery Energy Storage System (BESS) along with photovoltaic (PV) energy generation, and non-critical load-shedding. The EMS collects data such as real-time energy consumption and generation, and environmental parameters such as temperature, wind speed and irradiance, using a smart sensing strategy whereby measurements can be recorded and computing can be performed both locally and in the cloud. Within the Spanish electricity market and applying a two-tariff pricing, annual savings per installed battery power of 16.8 euros/kW are achieved. The system has the advantage that it can be applied to both new and existing installations, providing a two-way connection to the electricity grid, PV generation, smart measurement systems and the necessary management software. All these functions are integrated in a flexible and low cost HW/SW architecture. Finally, the whole system is validated through real tests carried out on a pilot plant and under different weather conditions.


2019 ◽  
Vol 28 (2) ◽  
pp. 21-26
Author(s):  
Ming Kai Tan ◽  
Hui Lee ◽  
Hugh Tiang Wah Tan

Distribution of consumers in a patch of vegetation can be predicted by resource availability and explained by the resource-concentration and optimal-foraging hypotheses. These hypotheses have not been explored for flower-visiting Orthoptera because they are deemed less economically or ecologically important. Some flower-visiting orthopterans can provide pollination services, which warrants more attention. We studied a Singaporean, floriphilic katydid, Phaneropterabrevis, to investigate the following questions: 1) how frequently does P.brevis visit flowers compared to other flower visitors and 2) what factors predict the abundance of P.brevis? We collected abundance data for P.brevis and other flower-visiting arthropods and quantified seven environmental parameters, including flower abundance and host-plant species richness. We found that P.brevis frequents flowers significantly more often than some common and expected flower visitors such as hoverflies. In line with the prediction of the resource-concentration hypothesis, the abundance of P.brevis was positively correlated with a higher flower abundance. Owing to the limited information on unexpected wild flower visitors and pollinators, especially from the understudied tropics of Southeast Asia, we propose that P.brevis can be a model organism for future studies to answer fundamental questions on flower visitation.


2021 ◽  
Vol 4 ◽  
Author(s):  
Tomohiro Yoshida ◽  
Yasunori Kusunoki ◽  
Yuya Fukano ◽  
Naoki Hijii

Vertical stratification of forests results in the occurrence of different arthropod assemblages between the vertical layers. Fallen arthropods from the canopy layers (i.e., “arthropod rain”) are additional food sources for predators thriving on the forest floor (FF). However, the abundances of arthropods are strongly affected by weather conditions and vertical stratification. Therefore, in this study, we investigated the vertical distribution of arthropod assemblages and effects of temperature and precipitation on the arthropod rain in a temperate conifer (Cryptomeria japonica) forest. Arthropods were collected by water-pan traps and trunk-sticky traps in the upper canopy (UC; 16 m), lower canopy (10 m), and FF (0.5 m). Among the fallen arthropods collected by water-pan traps, wandering detritivores, and herbivores were more abundant ranging from the FF to the UC, whereas the abundance of wandering predators (mainly spiders) was similar in the upper and lower canopies. However, detritivores, herbivores, and predators showed the highest abundance in the UC among the flying arthropods. Wandering arthropods moved upward from the FF toward the tree trunks more frequently than downward, indicating the importance of arthropod immigration from the ground to arboreal habitats. Temperature and precipitation had different effects on fallen and moving arthropods among different taxonomic groups. Flying arthropods were affected only by temperature, while wandering detritivores and herbivores were affected by precipitation and temperature. Thus, the abundance of wandering and flying arthropods differed among the vertical layers of a temperate conifer forest; additionally, arthropod rain was closely associated with weather conditions.


Climate ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 96 ◽  
Author(s):  
R. Alexis Barrientos-González ◽  
Ricardo E. Vega-Azamar ◽  
Julio C. Cruz-Argüello ◽  
Norma A. Oropeza-García ◽  
Maritza Chan-Juárez ◽  
...  

Urban territorial expansion generated in the last decades has brought a series of consequences, such as the variation between urban and suburban weather conditions affecting indoor temperature and increasing electricity consumption derived from the use of cooling systems. Current approaches of simulation models in residential buildings use indoor environmental data for carrying out validations to propose hygrothermal comfort alternatives for the mitigation of the effects of the external environmental conditions on the interior spaces of dwellings. In this work, an hourly evaluation of both indoor and outdoor environmental parameters of two case studies in a tropical climate was carried out, by means of a whole-building simulation approach tool during a week representative of the warmest period of the year. The integration of the collected environmental data in the theoretical model allowed us to reduce the error range of the estimated indoor temperature with results in normalized mean bias error between 7.10% and −0.74% and in coefficient of variation of the root mean square error between 16.72% and 2.62%, in the different indoor zones of the case studies. At the same time, the energy assessment showed a difference of 33% in Case 1 and −217% in Case 2 for final electricity consumption.


2009 ◽  
Vol 87 (2) ◽  
pp. 132-138 ◽  
Author(s):  
D. W. Burles ◽  
R. M. Brigham ◽  
R. A. Ring ◽  
T. E. Reimchen

Adverse weather conditions frequently have a significant negative influence on survival and reproductive success of insectivorous bats. Low ambient temperatures increase the energetic costs of maintaining euthermia and reduces insect activity, while precipitation likely adds “clutter” making prey more difficult to detect using echolocation. We studied two species of insectivorous bats, Myotis lucifugus (LeConte, 1831) and Myotis keenii (Merriam, 1895), in the Pacific Northwest of Canada, a region that experiences frequent cool, wet weather during spring and summer. Our study took place during the El Niño – La Niña cycle of 1998–1999, which resulted in contrasting years. The summer of 1998 was unusually warm and dry, while the summer of 1999 was unusually cool and wet. We predicted that both species would be adversely affected by the cool, wet conditions of 1999, resulting in prolonged gestation, late fledging of young, and lower reproductive success. However, this was not the case. Myotis lucifugus did experience delays in reproductive timing and lower reproductive success in 1999, as predicted, whereas M. keenii experienced much shorter gestations, earlier fledgings, and no difference in reproductive success between years. We hypothesize that the ability of M. keenii to glean prey enables it to better cope with cool, wet conditions.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1021 ◽  
Author(s):  
Juan Picos ◽  
Laura Alonso ◽  
Guillermo Bastos ◽  
Julia Armesto

To optimize suppression, restoration, and prevention plans against wildfire, postfire assessment is a key input. Since little research has been carried out on applying Sentinel-2 imagery through an integrated approach to evaluate how environmental parameters affect fire severity, this work aims to fill this gap. A set of large forest fires that occurred in northwest Spain during extreme weather conditions were adopted as a case study. Sentinel-2 information was used to build the fire severity map and to evaluate the relation between it and a set of its driving factors: land cover, aspect, slope, proximity to the nearest stream, and fire recurrence. The cover types most affected by fire were scrubland, rocky areas, and Eucalyptus. The presence of streams was identified as a major cause of the reduced severity of fires in broadleaves. The occurrence of fires in the past is linked to the severity of fires, depending on the land cover. This research aims to help fire researchers, authority managers, and policy makers distinguish the conditions under which the damage by fire is minimized and optimize the resources allocated to restoration and future fire suppression.


2020 ◽  
Vol 375 (1806) ◽  
pp. 20190539 ◽  
Author(s):  
Jurriaan M. de Vos ◽  
Hannah Augustijnen ◽  
Livio Bätscher ◽  
Kay Lucek

Changes in chromosome numbers may strongly affect reproductive barriers, because individuals heterozygous for distinct karyotypes are typically expected to be at least partially sterile or to show reduced recombination. Therefore, several classic speciation models are based on chromosomal changes. One import mechanism generating variation in chromosome numbers is fusion and fission of existing chromosomes, which is particularly likely in species with holocentric chromosomes, i.e. chromosomes that lack a single centromere. Holocentric chromosomes evolved repeatedly across the tree of life, including in Lepidoptera . Although changes in chromosome numbers are hypothesized to be an important driver of the spectacular diversification of Lepidoptera, comparative studies across the order are lacking. We performed the first comprehensive literature survey of karyotypes for Lepidoptera species since the 1970s and tested if, and how, chromosomal variation might affect speciation. Even though a meta-analysis of karyological differences between closely related taxa did not reveal an effect on the degree of reproductive isolation, phylogenetic diversification rate analyses across the 16 best-covered genera indicated a strong, positive association of rates of chromosome number evolution and speciation. These findings suggest a macroevolutionary impact of varying chromosome numbers in Lepidoptera and likely apply to other taxonomic groups, especially to those with holocentric chromosomes. This article is part of the theme issue ‘Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers’.


2017 ◽  
Author(s):  
Aleksandr N Ishmatov

There are many theories of the seasonality of influenza for different climatic zones. But none of the known theories provides a clear explanation, especially for the tropical and subtropical climate. Here we have originally analyzed the association/connection of activity of seasonal influenza in Okinawa (subtropical zone) with the probability of occurring of supersaturation in the human airways when inhaling environmental air under specific weather conditions. We have shown for the first time that the effects of supersaturation in the human airways may be associated with main representative peaks of intensity/activity of influenza in Okinawa in the period of observation from Jan 2007 until Dec 2012 including 2009 pandemic. Our observation is the first one which clearly shows in the practice that the effect of supersaturation in the airways can be used for understanding and forecast the influenza activity in subtropical and tropical zones. Because the effect of supersaturation may lead to an additional risk of acidification of epithelial lining fluid in the local areas of the respiratory tract and to additional risk of deposition of infectious agents from inhaled air in the upper airways.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3246 ◽  
Author(s):  
Cassandra L. Ettinger ◽  
Sofie E. Voerman ◽  
Jenna M. Lang ◽  
John J. Stachowicz ◽  
Jonathan A. Eisen

Background Zostera marina (also known as eelgrass) is a foundation species in coastal and marine ecosystems worldwide and is a model for studies of seagrasses (a paraphyletic group in the order Alismatales) that include all the known fully submerged marine angiosperms. In recent years, there has been a growing appreciation of the potential importance of the microbial communities (i.e., microbiomes) associated with various plant species. Here we report a study of variation in Z. marina microbiomes from a field site in Bodega Bay, CA. Methods We characterized and then compared the microbial communities of root, leaf and sediment samples (using 16S ribosomal RNA gene PCR and sequencing) and associated environmental parameters from the inside, edge and outside of a single subtidal Z. marina patch. Multiple comparative approaches were used to examine associations between microbiome features (e.g., diversity, taxonomic composition) and environmental parameters and to compare sample types and sites. Results Microbial communities differed significantly between sample types (root, leaf and sediment) and in sediments from different sites (inside, edge, outside). Carbon:Nitrogen ratio and eelgrass density were both significantly correlated to sediment community composition. Enrichment of certain taxonomic groups in each sample type was detected and analyzed in regard to possible functional implications (especially regarding sulfur metabolism). Discussion Our results are mostly consistent with prior work on seagrass associated microbiomes with a few differences and additional findings. From a functional point of view, the most significant finding is that many of the taxa that differ significantly between sample types and sites are closely related to ones commonly associated with various aspects of sulfur and nitrogen metabolism. Though not a traditional model organism, we believe that Z. marina can become a model for studies of marine plant-microbiome interactions.


Sign in / Sign up

Export Citation Format

Share Document