Experimental study of physical mechanisms in the control of supersonic impinging jets using microjets

2008 ◽  
Vol 613 ◽  
pp. 55-83 ◽  
Author(s):  
FARRUKH S. ALVI ◽  
HUADONG LOU ◽  
CHIANG SHIH ◽  
RAJAN KUMAR

Supersonic impinging jet(s) inherently produce a highly unsteady flow field. The occurrence of such flows leads to many adverse effects for short take-off and vertical landing (STOVL) aircraft such as: a significant increase in the noise level, very high unsteady loads on nearby structures and an appreciable loss in lift during hover. In prior studies, we have demonstrated that arrays of microjets, appropriately placed near the nozzle exit, effectively disrupt the feedback loop inherent in impinging jet flows. In these studies, the effectiveness of the control was found to be strongly dependent on a number of geometric and flow parameters, such as the impingement plane distance, microjet orientation and jet operating conditions. In this paper, the effects of some of these parameters that appear to determine control efficiency are examined and some of the fundamental mechanisms behind this control approach are explored. Through comprehensive two- and three-component velocity (and vorticity) field measurements it has been clearly demonstrated that the activation of microjets leads to a local thickening of the jet shear layer, near the nozzle exit, making it more stable and less receptive to disturbances. Furthermore, microjets generate strong streamwise vorticity in the form of well-organized, counter-rotating vortex pairs. This increase in streamwise vorticity is concomitant with a reduction in the azimuthal vorticity of the primary jet. Based on these results and a simplified analysis of vorticity transport, it is suggested that the generation of these streamwise vortices is mainly a result of the redirection of the azimuthal vorticity by vorticity tilting and stretching mechanisms. The emergence of these longitudinal structures weakens the large-scale axisymmetric structures in the jet shear layer while introducing substantial three-dimensionality into the flow. Together, these factors lead to the attenuation of the feedback loop and a significant reduction of flow unsteadiness.

Author(s):  
F. S. Alvi ◽  
H. Lou ◽  
C. Shih

Supersonic impinging jets produce a highly unsteady flowfield leading to very high dynamic pressure loads on nearby surfaces. In earlier studies, we conclusively demonstrated that arrays of supersonic microjet, 400 μm in diameter, effectively disrupted the feedback loop inherent in high-speed impinging jet flows. This feedback disruption results in significant reductions in the adverse effects associated with such flows. In this paper, by primarily using detailed velocity field measurements, we examine the role of streamwise vorticity in order to better understand the mechanisms behind this control scheme. The velocity field measurements clearly reveal the presence of well-organized, streamwise vortices with the activation of microjets. This increase in streamwise vorticity is concomitant with a reduction in the azimuthal vorticity of the primary jet. We propose that the streamwise vorticity is mainly a result of the redirection of the azimuthal vorticity, which leads to a weakening of the large-scale structures in the primary jet. The appearance of strong vortices in the shear layer near the nozzle exit due to microjets further weakens the spatial coherence of the coupling between the acoustic waves and shear layer instability, while thickening the jet shear layer. All these effects are thought to be collectively responsible for the efficient disruption of the feedback loop using microjets.


1999 ◽  
Vol 382 ◽  
pp. 307-329 ◽  
Author(s):  
JUDITH K. FOSS ◽  
K. B. M. Q. ZAMAN

The large- and small-scale vortical motions produced by ‘delta tabs’ in a two-stream shear layer have been studied experimentally. An increase in mixing was observed when the base of the triangular shaped tab was affixed to the trailing edge of the splitter plate and the apex was pitched at some angle with respect to the flow axis. Such an arrangement produced a pair of counter-rotating streamwise vortices. Hot-wire measurements detailed the velocity, time-averaged vorticity (Ωx) and small-scale turbulence features in the three-dimensional space downstream of the tabs. The small-scale structures, whose scale corresponds to that of the peak in the dissipation spectrum, were identified and counted using the peak-valley-counting technique. The optimal pitch angle, θ, for a single tab and the optimal spanwise spacing, S, for a multiple tab array were identified. Since the goal was to increase mixing, the optimal tab configuration was determined from two properties of the flow field: (i) the large-scale motions with the maximum Ωx, and (ii) the largest number of small-scale motions in a given time period. The peak streamwise vorticity magnitude [mid ]Ωx−max[mid ] was found to have a unique relationship with the tab pitch angle. Furthermore, for all cases examined, the overall small-scale population was found to correlate directly with [mid ]Ωx−max[mid ]. Both quantities peaked at θ≈±45°. It is interesting to note that the peak magnitude of the corresponding circulation in the cross-sectional plane occurred for θ≈±90°. For an array of tabs, the two quantities also depended on the tab spacing. An array of contiguous tabs acted as a solid deflector producing the weakest streamwise vortices and the least small-scale population. For the measurement range covered, the optimal spacing was found to be S≈1.5 tab widths.


Author(s):  
Qingguang Chen ◽  
Zhong Xu ◽  
Yulin Wu ◽  
Yongjian Zhang

Flow characteristics of turbulent impinging jets issuing, respectively, from a rectangular and a square nozzles have been investigated numerically through the solution of three-dimensional Navier-Strokes equations in steady state. Two geometries with two nozzle-to-plate spacings of four and eight times of hydraulic diameters of the jet pipes, and two Reynolds numbers of 20000 and 30000 have been considered with fully developed inlet boundary conditions. An RNG based k–ε turbulence model and a deferred correction QUICK scheme in conjunction with the wall function method have been applied to the prediction of the flow fields within semi-confined spaces. A common feature revealed by the computational results is the presence of a toroidal recirculation zone around the jet. An adverse pressure gradient is found at the impingement surface downstream the stagnation point. Boundary layer separation will occur if the gradient is strong enough, and the separation manifests itself as a secondary recirculation zone at the surface. In addition, three-dimensional simulations reveal the existence of two and four pronounced streamwise velocity off-center peaks at the cross-planes near to the impingement plate, respectively, in the rectangular and square impinging jet flows. These peaks are found forming at the horizontal planes where the wall jets start forming accompanied by two or four pairs of counter-rotating vortex rings. It is believed that the formation of the off-center velocity peaks is due to the vorticity diffusion along the wall jet as the jet impinges on the target plate.


Author(s):  
David Arthurs ◽  
Samir Ziada

High speed impinging jets are frequently used in a variety of industrial applications including thermal and coating control processes. These flows are liable to the production of very intense narrow band acoustic tones, which are produced by a feedback mechanism between instabilities in the jet free shear layer which roll up to form large scale coherent structures, and pressure fluctuations produced by the impingement of these structures at the impingement surface. This paper examines tone generation of a high speed planar gas jet impinging normally on a flat, rigid surface. Experiments are performed over the complete range of subsonic and transonic jet flow velocities for which tones are generated, from U0 = 150m/s (M≈0.4) to choked flow (U0 = 343m/s, M = 1), and over the complete range of impingement distance for which tones occur. The effect of varying the jet thickness is also examined. The behavior of the planar impinging jet case is compared to that of the axisymmetric case, and found to be significantly different, with tones being excited at larger impingement distances, and at lower flow velocities. The Strouhal numbers associated with tone generation in the planar case are on average an order of magnitude lower than that of the axisymmetric case when using similar velocity and length scales. The frequency behavior of the resulting tones is predicted using a simple feedback model, which allows the identification of the various shear layer modes of the instabilities driving tone generation. Finally, a thorough dimensionless analysis is performed in order to quantify the system behavior in terms of the appropriate scales.


2020 ◽  
pp. 227-227
Author(s):  
Florin Bode ◽  
Claudiu Patrascu ◽  
Ilinca Nastase

Heat and mass transfer can be greatly increased when using impinging jets, regardless the application. The reason behind this is the complex behavior of the impinging jet flow which is leading to the generation of a multitude of flow phenomena, like: large-scale structures, small scale turbulent mixing, large curvature involving strong normal stresses and strong shear, stagnation, separation and re-attachment of the wall boundary layers, increased heat transfer at the impinged plate. All these phenomena listed above have highly unsteady nature and even though a lot of scientific studies have approached this subject, the impinging jet is not fully understood due to the difficulties of carrying out detailed experimental and numerically investigations. Nevertheless, for heat transfer enhancement in impinging jet applications, both passive and active strategies are employed. The effect of nozzle geometry and the impinging surface macrostructure modification are some of the most prominent passive strategies. On the other side, the most used active strategies utilize acoustical and mechanical oscillations in the exit plane of the flow, which in certain situations favors mixing enhancement. This is favored by the intensification of some instabilities and by the onset of large scale vortices with important levels of energy.


2010 ◽  
Vol 132 (12) ◽  
Author(s):  
Ting Wang ◽  
T. S. Dhanasekaran

In heavy-frame advanced turbine systems, steam is used as a coolant for turbine blade cooling. The concept of injecting mist into the impinging jets of steam was experimentally proved as an effective way of significantly enhancing the cooling effectiveness in the laboratory under low pressure and temperature conditions. However, whether or not mist/steam cooling is applicable under actual gas turbine operating conditions is still subject to further verification. Recognizing the difficulties of conducting experiments in an actual high-pressure, high-temperature working gas turbine, a simulation using a computational fluid dynamic (CFD) model calibrated with laboratory data would be an opted approach. To this end, the present study conducts a CFD model calibration against the database of two experimental cases including a slot impinging jet and three rows of staggered impinging jets. The calibrated CFD model was then used to predict the mist cooling enhancement at the elevated gas turbine working condition. Using the experimental results, the CFD model has been tuned by employing different turbulence models, computational cells, and wall y+ values. In addition, the effects of different forces (e.g., drag, thermophoretic, Brownian, and Saffman’s lift force) are also studied. None of the models is a good predictor for all the flow regions from near the stagnation region to far-field downstream of the jets. Overall speaking, both standard k-ε and Reynolds stress model (RSM) turbulence models perform better than other models. The RSM model has produced the closest results to the experimental data due to its capability of modeling the nonisotropic turbulence shear stresses in the 3D impinging jet fields. The simulated results show that the calibrated CFD model can predict the heat transfer coefficient of steam-only case within 2–5% deviations from the experimental results for all the cases. When mist is employed, the prediction of wall temperatures is within 5% for a slot jet and within 10% for three-row jets. The predicted results with 1.5% mist at the gas turbine working condition show the mist cooling enhancement of 20%, whereas in the laboratory condition, the enhancement is predicted as 80%. Increasing mist ratio to 5% increased the cooling enhancement to about 100% at the gas turbine working condition.


Author(s):  
Joshua R. Brinkerhoff ◽  
Metin I. Yaras

The effect of circumferential inflow swirl on the instability of the shear layer formed between the core and bypass flows discharged from an axisymmetric twelve-lobed mixer is studied through a combined experimental and computational investigation. A series of unsteady Navier-Stokes simulations are performed with 0 and 31 degrees of circumferential swirl specified in the core stream of the lobed mixer. Comparison of the axial- and swirling-inflow cases highlights the effect of swirl on the instability-driven transient flow structures that develop within and downstream of the lobed mixer. Medium- and large-scale unsteady motions are captured by the fine spatial and temporal resolution of the unsteady Navier-Stokes simulations. The simulations are validated against four-wire thermal anemometry measurements in a scaled lobed-mixer wind-tunnel model with turbulent, swirling inflow conditions. The simulation results illustrate that while the axial-inflow case develops layers of streamwise vorticity uniformly along the lobe walls, the core flow in the swirling-inflow case separates from the suction side of the lobe wall near the lobe trough. Roll-up and axial stretching of the separated flow produces Λ-shaped vortical structures upstream of the discharge plane. The Λ-shaped structures interact with the shear layers discharged from the lobe trailing edge and accelerate the breakdown of the shear layer in the swirling-inflow case relative to the axial-inflow case. The extent of this interaction is shown to strongly affect the streamwise mixing rate of the flow downstream of the discharge plane.


Author(s):  
Ting Wang ◽  
T. S. Dhanasekaran

In the heavy-frame advanced turbine systems, steam is used as a coolant for turbine blade cooling. The concept of injecting mist into the impinging jets of steam was experimentally proved as an effective way of significantly enhancing the cooling effectiveness in the laboratory under low pressure and temperature conditions. However, whether mist/steam cooling is applicable under actual gas turbine operating conditions is still subject to further verification. Recognizing the difficulties of conducting experiments in an actual high-pressure, high-temperature working gas turbine, a simulation using a CFD model calibrated with laboratory data would be an opted approach. To this end, the present study conducts a CFD model calibration against the database of two experimental cases including a slot impinging jet and three rows of staggered impinging jets. Using the experimental results, the CFD model has been tuned by employing different turbulence models, computational cells, wall y+ values, and selection of near-wall functions. In addition, the effect of different forces (e.g. drag, thermophoretic, Brownian, and Saffman’s lift force) are also studied. None of the models are good predictors for all the flow regions from near the stagnation region to far-field downstream of the jets. Overall speaking, both the standard k-ε and RSM turbulence models perform better than other models. The RSM model has produced the closest results to the experimental data due to its capability of modeling the non-isotropic turbulence shear stresses in the 3-D impinging jet fields. For the 3-D flow fields, the nearest element from the wall must be set to approximately unity (y+ ≈ 1) to capture the correct flow structure. The simulated results showed that the calibrated CFD model could predict the heat transfer coefficient of steam-only case within 2 to 5% deviations from the experimental results for all the cases. When mist is employed, the prediction of wall temperatures is within 5% for a slot jet and within 10% for three-row jets.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Finn Lückoff ◽  
Moritz Sieber ◽  
Christian Oliver Paschereit ◽  
Kilian Oberleithner

Abstract The reduction of NOx emissions remains a driving factor in the design process of swirl-stabilized combustion systems, to meet legislative restrictions. In reacting swirl flows, hydrodynamic coherent structures, such as periodic large-scale vortices in the shear layer, induce zones with increased heat release rate fluctuations in connection with temperature peaks, which lead to an increase of NOx emissions. Such large-scale vortices can be induced by the helical coherent structure known as precessing vortex core (PVC), which influences the flow and flame dynamics under certain operating conditions. We developed an active flow control system, allowing for a targeted actuation of the PVC, to investigate its impact on combustion properties such as NOx emissions. In this work, a perfectly premixed flame, which slightly damps the PVC, is studied in detail. Since the PVC is slightly damped, it can be precisely excited by means of open-loop flow control. In connection with time-resolved OH*-chemiluminescence and stereoscopic particle image velocimetry (PIV) measurements, the impact of the actuated PVC on flow and flame dynamics is characterized. It turns out that the PVC rolls up the inner shear layer, which results in an interaction of PVC-induced vortices and flame. This interaction considerably influences the measured level of NOx emissions, which grows with increasing PVC amplitude in a perfectly premixed flame. Nearly, the same increase is measured for partially premixed conditions. This is in contrast to previous studies, where the PVC is assumed to reduce the NOx emissions due to vortex-enhanced mixing.


2022 ◽  
Author(s):  
helmy El-Zoghby ◽  
Haitham S. Ramadan ◽  
Hassan Haes Alhelou

Abstract Modern energy infrastructures may face critical impacts on distributed generation and microgrids in presence of renewable and conventional energy sources. Fast restorations for these networks through proposing convenient proactive protection systems become mandatory for securing energy particularly after severe faults. This paper deals with presenting a descriptive modelling and comprehensive analysis of both steam and wind turbines using optimal real time emulators with unique testbench. Based on the dynamics of each turbine, both emulators are performed using 4kW, 180V, 1500r.p.m separately exited DC motor coupled to 2kW, 380V, 50Hz, 1500r.p.m three-phase synchronous generator. For real-time interface implementation, the mathematical models of steam and wind turbines are realized using LabVIEWTM software. The characterization and verification of both emulated steam and wind turbines are examined at different normal operating conditions in terms of steam valve position and wind speed, respectively. To regulate the current for both systems despite their diverse dynamics, a simple industrial proportional-integral (PI) controller is considered. Unlike other artificial intelligence-based controllers, the offline-controller gains are scheduled using genetic algorithm (GA) via MatlabTM software to ensure the due fast response to cope with unexpected faults. The experimental validity of both emulators is tested at the most severe abnormal operating conditions. The three-phase short circuit is considered at the generator terminals with different fault periods until reaching out-of-step conditions. From numerical analysis and experimental results, the characterization of both emulated steam and wind turbines explicitly mimics their real large-scale turbines in normal conditions. The emulators’ fast responses using the proposed GA-PI control approach are verified. Besides, the experimental dynamic behavior convergence and interoperability between the emulated and real systems for both steam and wind turbines are validated under severe conditions. The practical results confirm the fast-nature performance of the GA in avoid risky instability conditions.


Sign in / Sign up

Export Citation Format

Share Document