scholarly journals Preparation of Silver Nanopowders and Its Application in Low Temperature Electrically Conductive Adhesive

Author(s):  
Xiao Min Zhang ◽  
Xiao-Li Yang ◽  
Bin Wang

Abstract Printable electrically conductive adhesive with high electrical conductivity and good mechanical properties has wide application prospect in electronic device. In order to explore new conductive fillers of interconnecting materials in electronic circuit and electronic packaging industries, silver nanopowders were prepared by DC arc plasma method with high pure. The silver nanopowders present a spherical structure, the particle’s diameter range from 15 to 220 nm. In this paper, a high performance electrically conductive adhesive (ECA) was prepared. This ECA was fabricated by mixing silver nanopowders with epoxy resin and was screen-printed to a required shape. It was found that the ECA can be solidified through a low temperature sintering method in the air at 150 ℃ for 10 min. The electrical and mechanical of above ECA were investigated and characterized. The ECA filled with 75% silver nanopowders exhibits excellent performances, including high electrical conductivity (9.5×10-4 Ω·cm), high bonding strength ( 8.3 MPa). Based on the performance characteristics, the ECA applications in flexible printed electrodes and interconnecting materials are demonstrated.

Nanomaterials ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 162 ◽  
Author(s):  
Ailing Feng ◽  
Tianqi Hou ◽  
Zirui Jia ◽  
Yi Zhang ◽  
Fan Zhang ◽  
...  

MXene represents new kinds of two-dimensional material transition metal carbides and/or carbonitrides, which have attracted much attention in various applications including electrochemical storage devices, catalysts, and polymer composite. Here, we report a facile method to synthesize Ti3C2Tx MXene nanosheets and prepare a novel electrically conductive adhesive based on epoxy resin filled with Ti3C2Tx MXene nanosheets by solution blending. The structure, morphology, and performance of Ti3C2Tx MXene nanosheets and epoxy/Ti3C2Tx MXene nanosheets composite were investigated. The results show that Ti3C2Tx MXene possesses nanosheet structure. Ti3C2Tx MXene nanosheets were homogeneously dispersed in epoxy resin. Electrical conductivity and mechanical properties measurements reveal that the epoxy/Ti3C2Tx MXene nanosheet composite exhibited both good electrical conductivity (4.52 × 10−4 S/m) and favorable mechanical properties (tensile strength of 66.2 MPa and impact strength of 24.2 kJ/m2) when the content of Ti3C2Tx MXene nanosheets is 1.2 wt %. Thus, Ti3C2Tx MXene is a promising filler for electrically conductive adhesive with high electric conductivity and high mechanical performance.


2021 ◽  
Author(s):  
Pradeep Lall ◽  
Jinesh Narangaparambil ◽  
Scott Miller

Abstract The increased versatility in the design and manufacturing of components in low volumes, as well as the shorter time between design and prototype, has increased interest in the field of additively printed electronics. The ability to directly print on a variety of substrates, whether rigid, flexible, or conformable, provides several benefits over conventional electronics fabrication methods. Furthermore, the growing complexity of flexible electronics necessitates the development of multilayered circuits similar to traditional PCBs to decrease the volumetric and gravimetric effect of the underlying electronics. Using z-axis interconnections with dielectric materials, which may allow or prevent the connection between two layers, is one method of reaching several layers of circuits. In this paper, a working multilayer circuitry test vehicle is designed and additively printed using the direct-write method. The circuit model involves conductive and dielectric ink printing, as well as passive and active component attachments using an electrically conductive adhesive (ECA) and low-temperature solder (LTS). The study also shows details about the process of developing dielectric printing parameters for microvias for multilayer z-axis interconnections.


2021 ◽  
Vol 11 (7) ◽  
pp. 1231-1238
Author(s):  
Maocheng Zhang ◽  
Mengqi Yao ◽  
Ni Wang ◽  
Wencheng Hu

Silver powders, with high electrical conductivity, as the conductive fillers of electrically conductive adhesives have been widely investigated in the fields of microelectronic packaging. Herein, polyaniline (PANI)-coated silver powders were successfully fabricated via a facile chemical reduction, followed by the polymerization of aniline. The PANI plays triple functions to synergistically improve the performance of electrically conductive pastes as follows: (1) The aniline-coated silver particles are used as an ideal dispersant to substitute polyvinyl pyrrolidone and polyethylene glycol in the preparation strategy of silver powders; (2) The polymerization of aniline plays a surface modifier role instead of silane coupling agents to prepare silver-based conductive adhesives with homodisperse silver powders; (3) The high conductivity of PANI could reduce the contact resistance between silver powders and decrease the electrical resistivity of conductive adhesive films significantly. As a result, the PANI coats silver powders (pH = 3) show a decreased electrical resistivity of conductive adhesive films of 4.24×10−5 Ω·cm with the shear resistance of 9.06 MPa and the sheet resistance of 10.6 mΩ.sq−1. This work provides an efficient way to controllably synthesize PANI-coated silver powders for high-performance electrically conductive pastes.


2012 ◽  
Vol 182-183 ◽  
pp. 254-258
Author(s):  
Zhong Li Zhao ◽  
Zun Li Mo ◽  
Zhong Yu Chen

Cellulose/Ag/polyaniline conductive composite with rather excellent electrical conductivity was heterogeneously synthesized in this paper. The UV-Vis analysis indicated that homogeneous nanoAg particles deposited on the surface of cellulose in the form of globe particles. They offered some electrons to polyaniline chains. This behavior resulted to the facts that more polyaniline embedded on cellulose and an integrated electrically conductive network formed. Consequently, the high electrical conductivity of the composite was observed. The value was 3.48 S/cm, which was higher two magnitudes than the electrical conductivity of cellulose/polyaniline composite (2.15×10-2S/cm), and even was higher than the electrical conductivity of pure polyaniline (0.142 S/cm). This paper provided a facile method for the preparation of cellulose/Ag/ polyaniline composite with favorable electrical conductivity.


2020 ◽  
Vol 20 (8) ◽  
pp. 5175-5181 ◽  
Author(s):  
Ruiqing Li ◽  
Chenyang Xu ◽  
Xiangfen Jiang ◽  
Yoshio Bando ◽  
Xuebin Wang

Developing high-performance nonprecious electrocatalysts for oxygen evolution reaction (OER) is of great importance, but it remains a challenge. In this paper, we synthesize a porous monolithic catalytic electrode, which is transition metal nitride, Ni3FeN, constructed on a 3D network-like support of the strutted graphene foam (Ni3FeN/SG). The obtained Ni3FeN/SG electrode shows the excellent catalytic activity and the durability for OER in alkaline solution, owing to iron incorporation, high electrical conductivity and 3D network-like structure of strutted graphene. It requires small overpotential (226 mV) to actuate 10 mA cm−2, superior to most recently developed catalysts and commercial RuO2. The fabrication strategy provides a substantial way to expand 3D porous monolithic electrodes for various electrocatalytic applications.


Sign in / Sign up

Export Citation Format

Share Document