scholarly journals Preparation and Characterization of Epoxy Resin Filled with Ti3C2Tx MXene Nanosheets with Excellent Electric Conductivity

Nanomaterials ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 162 ◽  
Author(s):  
Ailing Feng ◽  
Tianqi Hou ◽  
Zirui Jia ◽  
Yi Zhang ◽  
Fan Zhang ◽  
...  

MXene represents new kinds of two-dimensional material transition metal carbides and/or carbonitrides, which have attracted much attention in various applications including electrochemical storage devices, catalysts, and polymer composite. Here, we report a facile method to synthesize Ti3C2Tx MXene nanosheets and prepare a novel electrically conductive adhesive based on epoxy resin filled with Ti3C2Tx MXene nanosheets by solution blending. The structure, morphology, and performance of Ti3C2Tx MXene nanosheets and epoxy/Ti3C2Tx MXene nanosheets composite were investigated. The results show that Ti3C2Tx MXene possesses nanosheet structure. Ti3C2Tx MXene nanosheets were homogeneously dispersed in epoxy resin. Electrical conductivity and mechanical properties measurements reveal that the epoxy/Ti3C2Tx MXene nanosheet composite exhibited both good electrical conductivity (4.52 × 10−4 S/m) and favorable mechanical properties (tensile strength of 66.2 MPa and impact strength of 24.2 kJ/m2) when the content of Ti3C2Tx MXene nanosheets is 1.2 wt %. Thus, Ti3C2Tx MXene is a promising filler for electrically conductive adhesive with high electric conductivity and high mechanical performance.

2021 ◽  
Author(s):  
Xiao Min Zhang ◽  
Xiao-Li Yang ◽  
Bin Wang

Abstract Printable electrically conductive adhesive with high electrical conductivity and good mechanical properties has wide application prospect in electronic device. In order to explore new conductive fillers of interconnecting materials in electronic circuit and electronic packaging industries, silver nanopowders were prepared by DC arc plasma method with high pure. The silver nanopowders present a spherical structure, the particle’s diameter range from 15 to 220 nm. In this paper, a high performance electrically conductive adhesive (ECA) was prepared. This ECA was fabricated by mixing silver nanopowders with epoxy resin and was screen-printed to a required shape. It was found that the ECA can be solidified through a low temperature sintering method in the air at 150 ℃ for 10 min. The electrical and mechanical of above ECA were investigated and characterized. The ECA filled with 75% silver nanopowders exhibits excellent performances, including high electrical conductivity (9.5×10-4 Ω·cm), high bonding strength ( 8.3 MPa). Based on the performance characteristics, the ECA applications in flexible printed electrodes and interconnecting materials are demonstrated.


2021 ◽  
Author(s):  
Zhanyu Jia ◽  
Guangyao Li ◽  
Juan Wang ◽  
shouhua Su ◽  
Jie Wen ◽  
...  

Conductivity, self-healing and moderate mechanical properties are necessary for multifunctional hydrogels which have great potential in health-monitor sensor application. However, the combination of electrical conductivity, self-healing and good mechanical properties...


2019 ◽  
Vol 8 (1) ◽  
pp. 210-217 ◽  
Author(s):  
Yingjing Liang ◽  
Hongfa Qin ◽  
Jianzhang Huang ◽  
Sha Huan ◽  
David Hui

Abstract Defects and temperature effects on the mechanical properties of hexagonal boron nitride sheet (h-BN) containing randomly distributed defects are investigated by molecular dynamics simulations and the reasons of the results are discussed. Results show that defect deteriorate the mechanical performance of BNNS. The mechanical properties are reduced by increasing percentage of vacancy defects including fracture strength, fracture strain and Young’s modulus. Simulations also indicate that the mechanical properties decrease with the temperature increasing. Moreover, defects affect the stable configuration at high temperature. With the percentage of defect increases the nanostructures become more and more unstable. Positions of the defect influent the mechanical properties. The higher the temperature and the percentage of defect are, the stronger the position of the randomly distributed defect affects the mechanical properties. The study provides a theoretical basis for the preparation and performance optimization of BNNSs.


2020 ◽  
Vol 31 (14) ◽  
pp. 10947-10961 ◽  
Author(s):  
Hossein Derakhshankhah ◽  
Rahim Mohammad-Rezaei ◽  
Bakhshali Massoumi ◽  
Mojtaba Abbasian ◽  
Aram Rezaei ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1916 ◽  
Author(s):  
Mauro Giorcelli ◽  
Mattia Bartoli

In this work we focused our attention on an innovative use of food residual biomasses. In particular, we produced biochar from coffee waste and used it as filler in epoxy resin composites with the aim to increase their electrical properties. Electrical conductivity was studied for the biochar and biochar-based composite in function of pressure applied. The results obtained were compared with carbon black and carbon black composites. We demonstrated that, even if the coffee biochar had less conductivity compared with carbon black in powder form, it created composites with better conductivity in comparison with carbon black composites. In addition, composite mechanical properties were tested and they generally improved with respect to neat epoxy resin.


2015 ◽  
Vol 7 (24) ◽  
pp. 13685-13692 ◽  
Author(s):  
Hu-Ming Ren ◽  
Ying Guo ◽  
Sheng-Yun Huang ◽  
Kai Zhang ◽  
Matthew M.F. Yuen ◽  
...  

2018 ◽  
Vol 8 (4) ◽  
pp. 1074-1081 ◽  
Author(s):  
Torsten Geipel ◽  
Michel Meinert ◽  
Achim Kraft ◽  
Ulrich Eitner

Sign in / Sign up

Export Citation Format

Share Document