scholarly journals Antimicrobial, Anticoagulant and Anticancer Effects of Arum Palaestinum Flowers Extracts

Author(s):  
Majdi Dwikat ◽  
Nidal Jaradat ◽  
Johnny Amer ◽  
Ahmad Abdal Rahim ◽  
Mohammad Alqadi ◽  
...  

Abstract Background: Wild plants are amply utilized in traditional medicine and folkloric food worldwide. Arum palaestinum Boiss. (AP) is one of the wild Palestinian plants which leaves have a long history in the Middle Eastern countries as food and medicine. Herby, the current study aimed to evaluate the antimicrobial, coagulation cascade activities, and anticancer effects of (AP) flowers extract Methods: The aqueous extract of (AP) flowers was screened on its antimicrobial activity using microdilution assay against eight pathogens. While, prothrombin time, activated partial thromboplastin time, and thrombin time tests were measured utilizing standard hematological methods. And Anti cancer effect was assessed by using Parameters of cell cycles and alph feta protein level that were investigated for (AP) flowers fractionated with aqueous, DMSO, and methanol Results: The antimicrobial screening results revealed that the aqueous extract of (AP) has strong antibacterial effects against P. vulgaris and E. faecium compared with Ampicillin with MIC values of 6.25, 6.25 and 18 mg/ml, respectively. The aqueous extract of (AP) showed anticoagulant activity with significant prolonged results in aPTT and TT tests at high concentrations (50 mg/ml and 25 mg/ml) and slightly prolonged results in the PT test at a high concentration (50 mg/ml). The anticancer results indicate a delay in cell cycle through decreased the cell proliferation rate following effects of the AP fractions. The delay in the S phase was in favor of the water fraction. Water and DMSO fractions while maintained the cells in the G2-M phase similar to the DOX, the flower extract in methanol accelerated the cells in the G2-M phase suggesting that (AF) flower extracts have anti-cancer properties. At the same time Aqueous extract decreased HCC aFP to 1.55-fold (P=0.0008). While DMSO and methanolic extract had no significant effects on HCC aFP levels, compared to control untreated cells of 2519.16 ± 198.1 ng/ml. This data show that (AF) aqueous solution is potent inhibitor of alpha-fetoprotein secretion (P-value <0.05), which indicates its anti-carcinogenic effects Conclusion: These results showed that the aqueous extract of (AP) plant possesses bioactive components with antibacterial and anticoagulant properties, which may be exploited in the treatment of infectious diseases and blood coagulation disorders.

2017 ◽  
Vol 8 (4) ◽  
pp. 525
Author(s):  
Chandra Kishore Tyagi ◽  
Deenanath Jhade ◽  
Sunil Kumar Shah

<p>The study evaluated anticoagulant properties of the aqueous extract of <em>Cestrum nocturnum</em> using aPTT-Activated Partial Thromboplastin Time, PT- Prothrombin Time &amp; TT-Thrombin Time as standard procedures.</p><p>For <em>in vitro</em> coagulation assays, aqueous extract of plant prolonged APTT, TT, and PT clotting times in a dose-dependent manner (Table 7). It prolonged APTT clotting time from 45 ± 2 (2mg/mL) to 82.2 ± 2.63s (10mg/mL), PT clotting time from 20.4 ± 1.49 (2mg/mL) to 31.4 ± 2.15s (10mg/mL), and TT clotting time from 9.2 ± 1.16 (2mg/mL) to 17.4 ± 1.01s (10mg/mL) at the concentration of 2 to 10mg/mL. Heparin prolonged APTT and PT clotting times more than 111.8s and 40.8s, respectively, at a concentration of 1 IU/mL. Heparin prolonged TT clotting times more than 20.6s at a concentration of 1 IU/mL.</p><p>The phytochemical screening of the plant confirm the presence of saponin in the water and ethanolic extract, Alkaloid in all the extract except hexane extract, tannin in water, ethanol and methanol extract, amino acid in water and ethanolic extract, carbohydrate in water and methanolic extract and triterpenoids and glycoside were absent in all the extracts. The results demonstrated that the aqueous extract of <em>Cestrum nocturnum</em> possesses pharmacologically active anticoagulant principles that could be isolated and evaluated for clinical or physiological purposes.</p>


Marine Drugs ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 291 ◽  
Author(s):  
Amandine Adrien ◽  
Antoine Bonnet ◽  
Delphine Dufour ◽  
Stanislas Baudouin ◽  
Thierry Maugard ◽  
...  

(1) Background: Brown and red algal sulfated polysaccharides have been widely described as anticoagulant agents. However, data on green algae, especially on the Ulva genus, are limited. This study aimed at isolating ulvan from the green macroalga Ulva rigida using an acid- and solvent-free procedure, and investigating the effect of sulfate content on the anticoagulant activity of this polysaccharide. (2) Methods: The obtained ulvan fraction was chemically sulfated, leading to a doubling of the polysaccharide sulfate content in a second ulvan fraction. The potential anticoagulant activity of both ulvan fractions was then assessed using different assays, targeting the intrinsic and/or common (activated partial thromboplastin time), extrinsic (prothrombin time), and common (thrombin time) pathways, and the specific antithrombin-dependent pathway (anti-Xa and anti-IIa), of the coagulation cascade. Furthermore, their anticoagulant properties were compared to those of commercial anticoagulants: heparin and Lovenox®. (3) Results: The anticoagulant activity of the chemically-sulfated ulvan fraction was stronger than that of Lovenox® against both the intrinsic and extrinsic coagulation pathways. (4) Conclusion: The chemically-sulfated ulvan fraction could be a very interesting alternative to heparins, with different targets and a high anticoagulant activity.


1993 ◽  
Vol 69 (02) ◽  
pp. 157-163 ◽  
Author(s):  
Irving Fox ◽  
Adrian Dawson ◽  
Peter Loynds ◽  
Jane Eisner ◽  
Kathleen Findlen ◽  
...  

SummaryHirulog™ (BG8967) is a direct thrombin inhibitor built by rational design using the protein hirudin as a model (Maraganore et al. [1990]; Biochemistry 29: 7095–101). In order to evaluate the therapeutic potential for hirulog in the management of thrombotic disease, the tolerability and anticoagulant activity of the agent were examined in a study of human volunteers.In a randomized, placebo-controlled study (n = 54), the intravenous infusion of hirulog over 15 min showed a rapid, dose-dependent prolongation of activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT). There was a corresponding dose-dependent increase in plasma hirulog levels. The peptide was rapidly cleared with a half-life of 36 min and a total body clearance rate for the peptide of 0.43 1 kg−1 h−1. Similar activity was observed following subcutaneous injection but with sustained pharmacodynamic and pharmacokinetic behavior. There was a significant correlation between pharmacokinetic and pharmacodynamic variables for both intravenous (r = 0.8, p <0.001) and subcutaneous administration (r = 0.7, p = 0.002).To evaluate the possible interactions of aspirin on the tolerability and anticoagulant activity of intravenous hirulog, a cross-over design was employed in eight subjects. Aspirin administration did not modify the peptide’s activity. At the administered dose of 0.6 mg kg−1 h−1 for 2 h, hirulog infusion prolonged APTT from 230 to 260% baseline. The infusion of hirulog in subjects who had received aspirin was not associated with any significant changes in the template bleeding time.The final phase of the study examined the activity and tolerability of hirulog in ten subjects during prolonged intravenous infusions for up to 24 h. The peptide (0.3 mg kg−1 h−1) exhibited sustained anticoagulant activity with no evidence for a cumulative effect. During hirulog infusion, APTT was prolonged from 210 to 250% baseline.In all phases of the study, hirulog administration was generally well-tolerated.Our observations show that hirulog is an active antithrombin agent with excellent tolerability in humans. As a direct thrombin inhibitor, hirulog provides a novel approach for the management of thrombotic disease.


Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 445 ◽  
Author(s):  
Xue Liu ◽  
Peng Du ◽  
Xiao Liu ◽  
Sujian Cao ◽  
Ling Qin ◽  
...  

The active sulfated polysaccharide from seaweed possesses important pharmaceutical and biomedical potential. In the study, Monostroma sulfated polysaccharide (MSP) was obtained from Monostroma angicava, and the low-molecular-weight fragments of MSP (MSP-Fs: MSP-F1–MSP-F6) were prepared by controlled acid degradation. The molecular weights of MSP and MSP-F1–MSP-F6 were 335 kDa, 240 kDa, 90 kDa, 40 kDa, 24 kDa, 12 kDa, and 6.8 kDa, respectively. The polysaccharides were sulfated rhamnans that consisted of →3)-α-l-Rhap-(1→ and →2)-α-l-Rhap-(1→ units with partial sulfation at C-2 of →3)-α-l-Rhap-(1→ and C-3 of →2)-α-l-Rhap-(1→. Anticoagulant properties in vitro of MSP and MSP-F1–MSP-F6 were evaluated by studying the activated partial thromboplastin time, thrombin time, and prothrombin time. Anticoagulant activities in vivo of MSP and MSP-F4 were further evaluated; their fibrin(ogen)olytic activities in vivo and thrombolytic properties in vitro were also assessed by D-dimer, fibrin degradation products, plasminogen activator inhibitior-1, and clot lytic rate assays. The results showed that MSP and MSP-F1–MSP-F4 with molecular weights of 24–240 kDa had strong anticoagulant activities. A decrease in the molecular weight of MSP-Fs was accompanied by a decrease in the anticoagulant activity, and higher anticoagulant activity requires a molecular weight of over 12 kDa. MSP and MSP-F4 possessed strong anticoagulant activities in vivo, as well as high fibrin(ogen)olytic and thrombolytic activities. MSP and MSP-F4 have potential as drug or helpful food supplements for human health.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 274
Author(s):  
Konstantin V. Savateev ◽  
Victor V. Fedotov ◽  
Vladimir L. Rusinov ◽  
Svetlana K. Kotovskaya ◽  
Alexandr A. Spasov ◽  
...  

Hypercytokinemia, or cytokine storm, is one of the severe complications of viral and bacterial infections, involving the release of abnormal amounts of cytokines, resulting in a massive inflammatory response. Cytokine storm is associated with COVID-19 and sepsis high mortality rate by developing epithelial dysfunction and coagulopathy, leading to thromboembolism and multiple organ dysfunction syndrome. Anticoagulant therapy is an important tactic to prevent thrombosis in sepsis and COVID-19, but recent data show the incompatibility of modern direct oral anticoagulants and antiviral agents. It seems relevant to develop dual-action drugs with antiviral and anticoagulant properties. At the same time, it was shown that azolo[1,5-a]pyrimidines are heterocycles with a broad spectrum of antiviral activity. We have synthesized a new family of azolo[1,5-a]pyrimidines and their condensed polycyclic analogs by cyclocondensation reactions and direct CH-functionalization and studied their anticoagulant properties. Five compounds among 1,2,4-triazolo[1,5-a]pyrimidin-7-ones and 5-alkyl-1,3,4-thiadiazolo[3,2-a]purin-8-ones demonstrated higher anticoagulant activity than the reference drug, dabigatran etexilate. Antithrombin activity of most active compounds was confirmed using lipopolysaccharide (LPS)-treated blood to mimic the conditions of cytokine release syndrome. The studied compounds affected only the thrombin time value, reliably increasing it 6.5–15.2 times as compared to LPS-treated blood.


2021 ◽  
Vol 27 ◽  
Author(s):  
Alenabi Aylar ◽  
Malekinejad Hassan

Objective: In this review we discuss the emerging evidence for the effectiveness of cannabinoids in the treatment of cancer and inflammation. The remarkable effects complete the traditional evidence for their successful application in the treatment of pain and cancer-related side effects. Methods: we searched Pub Med (132 articles) and Google scholar (9 articles) databases and gathered the clinical (4 articles), preclinical (28 articles) studies, reports on cell culture models (30 articles) and other original and review articles (78 articles) related to inflammation, cancer and cannabinoids. Results: Cannabinoids are described in three different forms, comprising endo- phyto- and synthetic compounds that exert biological effects. The molecular and cellular pathways of endogenous cannabinoids in the maintenance of homeostasis are well documented. In addition to classical cannabinoid receptors type 1 and 2, Vanilloid receptors and G protein-coupled receptor 55 were identified as common receptors. Subsequently, the effectiveness of phyto- and synthetic cannabinoids mediated by cannabinoid receptors has been demonstrated in the treatment of inflammatory diseases including neurodegenerative diseases as well as gastrointestinal and respiratory inflammations. Another accepted property of cannabinoids is their anti-cancer effects. Cannabinoids were found to be effective in the treatment of lung, colorectal, prostate, breast, pancreas and hepatic cancers. The anticancer effects of cannabinoids were characterized by their anti-proliferative property, inhibition of cancer cells migration, suppression of vascularization and induction of apoptosis. Conclusion: The current review provides and overview the role of endocannabinoid system in the mediation of physiological functions, the type and expression of cannabinoids receptors under physiological and pathological conditions. In additions, the molecular pathways involved in the effects of cannabinoids and the effectiveness of cannabinoids in the treatment of inflammations and cancers are highlighted.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 750 ◽  
Author(s):  
Kadir Ozaltin ◽  
Marian Lehocky ◽  
Petr Humpolicek ◽  
Jana Pelkova ◽  
Antonio Di Martino ◽  
...  

Biomaterial-based blood clot formation is one of the biggest drawbacks of blood-contacting devices. To avoid blood clot formation, their surface must be tailored to increase hemocompatibility. Most synthetic polymeric biomaterials are inert and lack bonding sites for chemical agents to bond or tailor to the surface. In this study, polyethylene terephthalate was subjected to direct current air plasma treatment to enhance its surface energy and to bring oxidative functional binding sites. Marine-sourced anticoagulant sulphated polysaccharide fucoidan from Fucus vesiculosus was then immobilized onto the treated polyethylene terephthalate (PET) surface at different pH values to optimize chemical bonding behavior and therefore anticoagulant performance. Surface properties of samples were monitored using the water contact angle; chemical analyses were performed by FTIR and X-ray photoelectron spectroscopy (XPS) and their anticoagulant activity was tested by means of prothrombin time, activated partial thromboplastin time and thrombin time. On each of the fucoidan-immobilized surfaces, anticoagulation activity was performed by extending the thrombin time threshold and their pH 5 counterpart performed the best result compared to others.


Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 655 ◽  
Author(s):  
Giulia Vessella ◽  
Serena Traboni ◽  
Anna V. A. Pirozzi ◽  
Antonio Laezza ◽  
Alfonso Iadonisi ◽  
...  

Fucosylated chondroitin sulfate (fCS) is a glycosaminoglycan found up to now exclusively in the body wall of sea cucumbers. It shows several interesting activities, with the anticoagulant and antithrombotic as the most attractive ones. Its different mechanism of action on the blood coagulation cascade with respect to heparin and the retention of its activity by oral administration make fCS a very promising anticoagulant drug candidate for heparin replacement. Nonetheless, its typically heterogeneous structure, the detection of some adverse effects and the preference for new drugs not sourced from animal tissues, explain how mandatory is to open an access to safer and less heterogeneous non-natural fCS species. Here we contribute to this aim by investigating a suitable chemical strategy to obtain a regioisomer of the natural fCS polysaccharide, with sulfated l-fucosyl branches placed at position O-6 of N-acetyl-d-galactosamine (GalNAc) units instead of O-3 of d-glucuronic acid (GlcA) ones, as in natural fCSs. This strategy is based on the structural modification of a microbial sourced chondroitin polysaccharide by regioselective insertion of fucosyl branches and sulfate groups on its polymeric structure. A preliminary in vitro evaluation of the anticoagulant activity of three of such semi-synthetic fCS analogues is also reported.


1979 ◽  
Author(s):  
A.S. Bhargava ◽  
J. Heinick ◽  
Chr. Schöbel ◽  
P. Günzel

The anticoagulant effect of a new potent heparin preparation was compared with a commercially available heparin in vivo after intravenous application in beagle dogs. The anticoagulant activity was determined using thrombin time, activated partial thromboplastin time and whole blood clotting time after 5, 10 and 30 minutes of application. The relative potency of the new heparin preparation (Scherinq) was found to be 1.62 to 2.52 times higher than heparin used for comparison (150 USP units/mg, Dio-synth). The anticoagulant properties of both preparations were also studied in vitro using dog and human plasma. The relative potencies in vitro correlated well with those obtained in vivo. Further characterization with amidolytic method using chromogenic substrate for factor Xa and thrombin (S-2222 and S-2238 from KABI, Stockholm) showed that heparin (Schering) contains 243 to 378 USP units/raq depending upon the test systems used to assay the anticoagulation activity and in addition, proves the validity of the amidolytic method.


Sign in / Sign up

Export Citation Format

Share Document