scholarly journals Neutrophil Extracellular Traps Facilitate Sympathoexcitation After Traumatic Brain Injury Via HMGB1/AP1 Signaling Pathway

Author(s):  
Kaixin Zhu ◽  
Xiaoxiang Hou ◽  
Xiaolin Qu ◽  
Wen Chen ◽  
Kun Chen ◽  
...  

Abstract Background: Traumatic brain injury (TBI) usually accompanies with sympathetic excitation, and paradoxical sympathetic hyperactivity (PSH) may be detrimental to the prognosis of TBI sufferers. Neutrophils can form neutrophil extracellular traps (NETs) to get involved in the neuroinflammation after TBI. As an important form of NETs, HMGB1 were found to activate the expression of AP1, which can increase the formation of IL-1β in microglia. Considering that IL-1β is able to regulate sympathoexcitation, it is reasonable to infer that HMGB1/AP1 signaling plays an important role in sympathoexcitation after TBI. Methods: In this present study, rat model with diffuse axonal injury (DAI) was established. The existance of NETs and the expression level of HMGB1/AP1/IL-1β in the paraventricular nucleus (PVN) after DAI were examined by immunofluorescence and Western blot (WB). The role of HMGB1/AP1 in the activation of microglia, secretion of IL-1β and sympathoexcitaiton were identified in vitro. Moreover, stereotaxic injection of anti-HMGB1 or HMGB1 was conducted to further validate the effect of HMGB1/AP1 pathway on sympathoexcitation after TBI.Results: The indicators of sympathoexcitation, including mean arterial pressure and serum catecholamine, increased and peaked at 72 hours after TBI. The formation of NETs was observed in PVN after injury, whereas, no NETs were found in the control group. And meanwhile, levels of NETs in PVN were higher than that in the para-PVN tissues after the injury. In vitro experiments showed that HMGB1 can promote the activation of microglia as well as increase the expression of AP1 and IL-1β. In vivo experiments suggested HMGB1 have an impact on the expression of AP1 and IL-1β in the PVN, and further controlling the sympathoexcitation after TBI.Conclusion: NETs might mediate sympathoexcitation after TBI through microglial activation in the PVN in a HMGB1/AP1/IL-1β dependent way.

2021 ◽  
Vol 8 ◽  
Author(s):  
Yilu Zhou ◽  
Weimin Tao ◽  
Fuyi Shen ◽  
Weijia Du ◽  
Zhendong Xu ◽  
...  

Neutrophils play a vital role in the formation of arterial, venous and cancer-related thrombosis. Recent studies have shown that in a process known as NETosis, neutrophils release proteins and enzymes complexed to DNA fibers, collectively called neutrophil extracellular traps (NETs). Although NETs were originally described as a way for the host to capture and kill bacteria, current knowledge indicates that NETs also play an important role in thrombosis. According to recent studies, the destruction of vascular microenvironmental homeostasis and excessive NET formation lead to pathological thrombosis. In vitro experiments have found that NETs provide skeletal support for platelets, red blood cells and procoagulant molecules to promote thrombosis. The protein components contained in NETs activate the endogenous coagulation pathway to promote thrombosis. Therefore, NETs play an important role in the formation of arterial thrombosis, venous thrombosis and cancer-related thrombosis. This review will systematically summarize and explain the study of NETs in thrombosis in animal models and in vivo experiments to provide new targets for thrombosis prevention and treatment.


2014 ◽  
Vol 63 ◽  
pp. 114-123 ◽  
Author(s):  
Irina Surgucheva ◽  
Shuangteng He ◽  
Megan C. Rich ◽  
Ram Sharma ◽  
Natalia N. Ninkina ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Surashri Shinde-Jadhav ◽  
Jose Joao Mansure ◽  
Roni F. Rayes ◽  
Gautier Marcq ◽  
Mina Ayoub ◽  
...  

AbstractRadiation therapy (RT) is used in the management of several cancers; however, tumor radioresistance remains a challenge. Polymorphonuclear neutrophils (PMNs) are recruited to the tumor immune microenvironment (TIME) post-RT and can facilitate tumor progression by forming neutrophil extracellular traps (NETs). Here, we demonstrate a role for NETs as players in tumor radioresistance. Using a syngeneic bladder cancer model, increased NET deposition is observed in the TIME of mice treated with RT and inhibition of NETs improves overall radiation response. In vitro, the protein HMGB1 promotes NET formation through a TLR4-dependent manner and in vivo, inhibition of both HMGB1 and NETs significantly delays tumor growth. Finally, NETs are observed in bladder tumors of patients who did not respond to RT and had persistent disease post-RT, wherein a high tumoral PMN-to-CD8 ratio is associated with worse overall survival. Together, these findings identify NETs as a potential therapeutic target to increase radiation efficacy.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
César Díaz-Godínez ◽  
Julio C. Carrero

AbstractNeutrophil extracellular traps (NETs) are DNA fibers associated with histones, enzymes from neutrophil granules and anti-microbial peptides. NETs are released in a process denominated NETosis, which involves sequential steps that culminate with the DNA extrusion. NETosis has been described as a new mechanism of innate immunity related to defense against different pathogens. The initial studies of NETs were carried out with bacteria and fungi, but currently a large variety of microorganisms capable of inducing NETs have been described including protozoan and helminth parasites. Nevertheless, we have little knowledge about how NETosis process is carried out in response to the parasites, and about its implication in the resolution of this kind of disease. In the best case, the NETs entrap and kill parasites in vitro, but in others, immobilize the parasites without affecting their viability. Moreover, insufficient studies on the NETs in animal models of infections that would help to define their role, and the association of NETs with chronic inflammatory pathologies such as those occurring in several parasitic infections have left open the possibility of NETs contributing to pathology instead of protection. In this review, we focus on the reported mechanisms that lead to NET release by protozoan and helminth parasites and the evidence that support the role of NETosis in the resolution or pathogenesis of parasitic diseases.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250265
Author(s):  
Hubert Hayden ◽  
Nahla Ibrahim ◽  
Johannes Klopf ◽  
Branislav Zagrapan ◽  
Lisa-Marie Mauracher ◽  
...  

Over the past years, neutrophil extracellular traps (NETs) were shown to contribute to states of acute and chronic inflammatory disease. They are composed of expelled chromatin and decorated by neutrophil-derived proteins. Therefore, the analysis of DNA complexes with myeloperoxidase (MPO) by ELISA has become an attractive tool to measure NET formation in in vitro and in vivo samples. When we used a published MPO-DNA ELISA protocol and included an isotype control for the anti-MPO coating antibody, we observed high assay specificity for in vitro prepared NET samples, whereas the specificity for in vivo plasma samples was low. In addition, the assay failed to detect in vitro generated MPO-DNA complexes when spiked into plasma. Therefore, we set out to improve the specificity of the MPO-DNA ELISA for plasma samples. We found that the use of Fab fragments or immunoglobulins from different species or reversal of the antibody pair led to either a high background or a low dynamic range of detection that did not improve the specificity for plasma samples. Also, the use of higher plasma dilutions or pre-clearing of plasma immunoglobulins were ineffective. Finally, we found that a commercial reagent designed to block human anti-mouse antibodies and multivalent substances increased the detection window between the MPO antibody and isotype control for highly diluted plasma. We applied this modified ELISA protocol to analyze MPO-DNA complexes in human blood samples of acute and chronic inflammatory conditions. While markers of neutrophil activation and NET formation such as MPO, elastase and citrullinated histone H3 correlated significantly, we observed no correlation with the levels of MPO-DNA complexes. Therefore, we conclude that ELISA measurements of MPO-DNA complexes in human plasma are highly questionable regarding specificity of NET detection. In general, plasma analyses by ELISA should more frequently include isotype controls for antibodies to demonstrate target specificity.


Author(s):  
Asmaa Nabil-Adam ◽  
Mohamed A. Shreadah

Background: This study aimed to investigate the potential bioactivity and the ameliorative role of Galaxaura oblongata (G. oblongata) against LPS-induced toxicity by using hematological parameters. Objective: It is aimed also to examine its protective effect using the immunohistochemistry of liver and lungs as biomarkers in male BALB/C albino mice. Materials and Methods: the current study carried out using different in-vitro and in-vivo assays such as phytochemical, antioxidants, anti-inflammatory for in-vitro where the hematological and immunohistochemistry for lung and liver were investigated in vivo. Results: There are no previous studies were performed to investigate the in vivo and in vitro effects of the G. oblongata extracts as antioxidant and anti-inflammatory due to their rareness compared to other red algae. LPS treated mice revealed a significant decrease in total number of WBCs, RBCs, platelets, and HGB%, MPV, MCV and MCHC compared to the control group. On contrast, the HCT and MCHC were increased in the induction group which was treated with LPS compared to the control group. Furthermore, the immunohistochemistry results of the present study revealed the protective effect of G. oblongata compared to the induction group. G. oblongata can be used as protective marine natural products against the toxicity induced by LPS. Conclusion: It exhibited a significant ameliorative role against the alterations in the hematological parameters and immunohistochemistry of liver and lungs, and helps to reduce as well as coordinate the acute inflammations caused by TNF.


2011 ◽  
Vol 29 (4) ◽  
pp. 630-636 ◽  
Author(s):  
TAO CHEN ◽  
LEI ZHANG ◽  
YAN QU ◽  
KAI HUO ◽  
XIAOFAN JIANG ◽  
...  

2019 ◽  
Vol 19 (3) ◽  
pp. 1109-1130 ◽  
Author(s):  
Marzieh Hajiaghamemar ◽  
Taotao Wu ◽  
Matthew B. Panzer ◽  
Susan S. Margulies

AbstractWith the growing rate of traumatic brain injury (TBI), there is an increasing interest in validated tools to predict and prevent brain injuries. Finite element models (FEM) are valuable tools to estimate tissue responses, predict probability of TBI, and guide the development of safety equipment. In this study, we developed and validated an anisotropic pig brain multi-scale FEM by explicitly embedding the axonal tract structures and utilized the model to simulate experimental TBI in piglets undergoing dynamic head rotations. Binary logistic regression, survival analysis with Weibull distribution, and receiver operating characteristic curve analysis, coupled with repeated k-fold cross-validation technique, were used to examine 12 FEM-derived metrics related to axonal/brain tissue strain and strain rate for predicting the presence or absence of traumatic axonal injury (TAI). All 12 metrics performed well in predicting of TAI with prediction accuracy rate of 73–90%. The axonal-based metrics outperformed their rival brain tissue-based metrics in predicting TAI. The best predictors of TAI were maximum axonal strain times strain rate (MASxSR) and its corresponding optimal fraction-based metric (AF-MASxSR7.5) that represents the fraction of axonal fibers exceeding MASxSR of 7.5 s−1. The thresholds compare favorably with tissue tolerances found in in–vitro/in–vivo measurements in the literature. In addition, the damaged volume fractions (DVF) predicted using the axonal-based metrics, especially MASxSR (DVF = 0.05–4.5%), were closer to the actual DVF obtained from histopathology (AIV = 0.02–1.65%) in comparison with the DVF predicted using the brain-related metrics (DVF = 0.11–41.2%). The methods and the results from this study can be used to improve model prediction of TBI in humans.


2020 ◽  
Vol 319 (1) ◽  
pp. L137-L147 ◽  
Author(s):  
Kristin M. Hudock ◽  
Margaret S. Collins ◽  
Michelle Imbrogno ◽  
John Snowball ◽  
Elizabeth L. Kramer ◽  
...  

Neutrophil extracellular traps (NETs) provide host defense but can contribute to the pathobiology of diverse human diseases. We sought to determine the extent and mechanism by which NETs contribute to human airway cell inflammation. Primary normal human bronchial epithelial cells (HBEs) grown at air-liquid interface and wild-type (wt)CFBE41o- cells (expressing wtCFTR) were exposed to cell-free NETs from unrelated healthy volunteers for 18 h in vitro. Cytokines were measured in the apical supernatant by Luminex, and the effect on the HBE transcriptome was assessed by RNA sequencing. NETs consistently stimulated IL-8, TNF-α, and IL-1α secretion by HBEs from multiple donors, with variable effects on other cytokines (IL-6, G-CSF, and GM-CSF). Expression of HBE RNAs encoding IL-1 family cytokines, particularly IL-36 subfamily members, was increased in response to NETs. NET exposure in the presence of anakinra [recombinant human IL-1 receptor antagonist (rhIL-1RA)] dampened NET-induced changes in IL-8 and TNF-α proteins as well as IL-36α RNA. rhIL-36RA limited the increase in expression of proinflammatory cytokine RNAs in HBEs exposed to NETs. NETs selectively upregulate an IL-1 family cytokine response in HBEs, which enhances IL-8 production and is limited by rhIL-1RA. The present findings describe a unique mechanism by which NETs may contribute to inflammation in human lung disease in vivo. NET-driven IL-1 signaling may represent a novel target for modulating inflammation in diseases characterized by a substantial NET burden.


Sign in / Sign up

Export Citation Format

Share Document