scholarly journals Cost-Effective Proximity Detection and Filtering of Unreliable Results Based on BLE RSSI and IMU Readings Using Smartphones for Indoor Environments

Author(s):  
Katarzyna Filus ◽  
Sławomir Nowak ◽  
Joanna Domańska ◽  
Jakub Duda

Abstract Indoor environments are a major challenge in the domain of location-based services due to the inability to use GPS. Currently, Bluetooth Low Energy has been the most commonly used technology for such services due to its low cost, low power consumption, ubiquitous availability in smartphones and the dependence of the signal strength on the distance between devices. The article proposes a system that detects the proximity of a moving object with respect to static points (anchors), evaluates the quality of this prediction and filters out the unreliable results based on custom metrics. We define three metrics: two matrics based on RSSI and Intertial Measurement Unit (IMU) readings and one joint metric. This way the filtering is based on both, the external information (RSSI) and the internal information (IMU). To process the IMU data, we use machine learning activity recognition models (we apply feature selection and compare three models and choose the best one-Gradient Boosted Decision Trees). The proposed system is flexible and can be easily customized. The great majority of operations can be conducted directly on smartphones. The solution is easy to implement, cost-efficient and can be deployed in real-life applications (MICE industry, museums, industry).

Author(s):  
Weiyan Chen ◽  
Fusang Zhang ◽  
Tao Gu ◽  
Kexing Zhou ◽  
Zixuan Huo ◽  
...  

Floor plan construction has been one of the key techniques in many important applications such as indoor navigation, location-based services, and emergency rescue. Existing floor plan construction methods require expensive dedicated hardware (e.g., Lidar or depth camera), and may not work in low-visibility environments (e.g., smoke, fog or dust). In this paper, we develop a low-cost Ultra Wideband (UWB)-based system (named UWBMap) that is mounted on a mobile robot platform to construct floor plan through smoke. UWBMap leverages on low-cost and off-the-shelf UWB radar, and it is able to construct an indoor map with an accuracy comparable to Lidar (i.e., the state-of-the-art). The underpinning technique is to take advantage of the mobility of radar to form virtual antennas and gather spatial information of a target. UWBMap also eliminates both robot motion noise and environmental noise to enhance weak reflection from small objects for the robust construction process. In addition, we overcome the limited view of single radar by combining multi-view from multiple radars. Extensive experiments in different indoor environments show that UWBMap achieves a map construction with a median error of 11 cm and a 90-percentile error of 26 cm, and it operates effectively in indoor scenarios with glass wall and dense smoke.


2019 ◽  
Vol 13 (1) ◽  
pp. 47-61
Author(s):  
Guenther Retscher ◽  
Jonathan Kleine ◽  
Lisa Whitemore

Abstract More and more sensors and receivers are found nowadays in smartphones which can enable and improve positioning for Location-based Services and other navigation applications. Apart from inertial sensors, such as accelerometers, gyroscope and magnetometer, receivers for Wireless Fidelity (Wi-Fi) and GNSS signals can be employed for positioning of a mobile user. In this study, three trilateration methods for Wi-Fi positioning are investigated whereby the influence of the derivation of the relationship between the received signal strength (RSS) and the range to an Access Points (AP) are analyzed. The first approach is a straightforward resection for point determination and the second is based on the calculation of the center of gravity in a triangle of APs while weighting the received RSS. In the third method a differential approach is employed where as in Differential GNSS (DGNSS) corrections are derived and applied to the raw RSS measurements. In this Differential Wi-Fi (DWi-Fi) method, reference stations realized by low-cost Raspberry Pi units are used to model temporal RSS variations. In the experiments in this study two different indoor environments are used, one in a laboratory and the second in the entrance of an office building. The results of the second and third approach show position deviations from the ground truth of around 2 m in dependence of the geometrical point location. Furthermore, the transition between GNSS positioning outdoors and Wi-Fi localization indoors in the entrance area of the building is studied.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1742 ◽  
Author(s):  
Chuang Qian ◽  
Hongjuan Zhang ◽  
Jian Tang ◽  
Bijun Li ◽  
Hui Liu

An indoor map is a piece of infrastructure associated with location-based services. Simultaneous Localization and Mapping (SLAM)-based mobile mapping is an efficient method to construct an indoor map. This paper proposes an SLAM algorithm based on a laser scanner and an Inertial Measurement Unit (IMU) for 2D indoor mapping. A grid-based occupancy likelihood map is chosen as the map representation method and is built from all previous scans. Scan-to-map matching is utilized to find the optimal rigid-body transformation in order to avoid the accumulation of matching errors. Map generation and update are probabilistically motivated. According to the assumption that the orthogonal is the main feature of indoor environments, we propose a lightweight segment extraction method, based on the orthogonal blurred segments (OBS) method. Instead of calculating the parameters of segments, we give the scan points contained in blurred segments a greater weight during the construction of the grid-based occupancy likelihood map, which we call the orthogonal feature weighted occupancy likelihood map (OWOLM). The OWOLM enhances the occupancy likelihood map by fusing the orthogonal features. It can filter out noise scan points, produced by objects, such as glass cabinets and bookcases. Experiments were carried out in a library, which is a representative indoor environment, consisting of orthogonal features. The experimental result proves that, compared with the general occupancy likelihood map, the OWOLM can effectively reduce accumulated errors and construct a clearer indoor map.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3702 ◽  
Author(s):  
Hui-Seon Gang ◽  
Jae-Young Pyun

As smartphone built-in sensors, wireless technologies, and processor computing power become more advanced and global positioning system (GPS)-based positioning technologies are improving, location-based services (LBS) have become a part of our daily lives. At the same time, demand has grown for LBS applications in indoor environments, such as indoor path finding and navigation, marketing, entertainment, and location-based information retrieval. In this paper, we demonstrate the design and implementation of a smartphone-based indoor LBS system for location services consisting of smartphone applications and a server. The proposed indoor LBS system uses hybrid indoor positioning methods based on Bluetooth beacons, Geomagnetic field, Inertial Measurement Unit (IMU) sensors, and smartphone cameras and can be used for three types of indoor LBS applications. The performance of each positioning method demonstrates that our system retains the desired accuracy under experimental conditions. As these results illustrate that our system can maintain positioning accuracy to within 2 m 80% of the time, we believe our system can be a real solution for various indoor positioning service needs.


2021 ◽  
Vol 310 ◽  
pp. 03001
Author(s):  
Anindya Bose ◽  
Somnath Mahato ◽  
Sukabya Dan ◽  
Atanu Santra

Global Navigation Satellite System (GNSS) uses Precise Point Positioning (PPP) technique to find out accurate geolocation information of any point. Generally, costly, geodetic GNSS receivers are used for PPP. This manuscript presents the results of studies on the usability of commercial, compact, cost-effective GNSS modules with commercial antennas for PPP in comparison to commonly used geodetic, costly receivers from India, which is a excellent location for GNSS use. Compact GNSS modules from two manufacturers are used in the study, and the encouraging results show the clear advantage of cost, size, and power requirements of such modules. The modules provide sub-cm horizontal solution accuracy which is very similar to those obtained using geodetic receivers, and around 20 cm accuracy in the vertical coordinate, which is slightly inferior to the results provided by the geodetic reveivers. Results of this novel study would be useful for implementing cost-efficient GNSS PPP in real life, in highly demanding geodetic applications including CORS establishment and PPP.


Author(s):  
K. Ozacar ◽  
Y. Ortakci ◽  
I. Kahraman ◽  
R. Durgut ◽  
I. R. Karas

Interactive 3D architectural indoor design have been more popular after it benefited from Virtual Reality (VR) technologies. VR brings computer-generated 3D content to real life scale and enable users to observe immersive indoor environments so that users can directly modify it. This opportunity enables buyers to purchase a property off-the-plan cheaper through virtual models. Instead of showing property through 2D plan or renders, this visualized interior architecture of an on-sale unbuilt property is demonstrated beforehand so that the investors have an impression as if they were in the physical building. However, current applications either use highly resource consuming software, or are non-interactive, or requires specialist to create such environments. In this study, we have created a real-estate purposed low-cost high quality fully interactive VR application that provides a realistic interior architecture of the property by using free and lightweight software: Sweet Home 3D and Unity. A preliminary study showed that participants generally liked proposed real estate-purposed VR application, and it satisfied the expectation of the property buyers.


1997 ◽  
Vol 50 (2) ◽  
pp. 209-223 ◽  
Author(s):  
G. W. A. Offermans ◽  
A. W. S. Helwig ◽  
D. van Willigen

Eurofix is an integrated navigation system, which combines Differential GNSS and Loran-C. The Loran-C system is used to provide differential corrections for the GNSS pseudo-range measurements and integrity information by additionally modulating the transmitted signals. This modulation, however, is not allowed to degrade normal Loran-C operations. As data transmission is hindered by the aggressive Loran-C signal environment, special modulation patterns and Forward Error Correcting codes are designed to fulfil the requirements. Compared to other DGNSS services, Eurofix has a number of advantages: It covers a large area, its implementation in an already existing infrastructure is basically low-cost, it offers enhanced datalink availability in urban and mountainous environment, it has wide-area capabilities and, finally, it provides a free backup navigation system in case either Loran-C or GPS fails.The paper describes the Eurofix system, focusing on the Loran-C data channel. A modified RTCM type-9 message format is used with special Forward Error Correction. At Delft University a real-life test set-up has been built to evaluate the Eurofix performance for different scenarios. The results on datalink and DGNSS performance are presented. It is shown that metre-level DGNSS performance is achievable with low bit rate data channels, using Loran-C stations at up to 1000 km distance.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4851
Author(s):  
Giorgio de Alteriis ◽  
Domenico Accardo ◽  
Claudia Conte ◽  
Rosario Schiano Lo Moriello

The paper deals with performance enhancement of low-cost, consumer-grade inertial sensors realized by means of Micro Electro-Mechanical Systems (MEMS) technology. Focusing their attention on the reduction of bias instability and random walk-driven drift of cost-effective MEMS accelerometers and gyroscopes, the authors hereinafter propose a suitable method, based on a redundant configuration and complemented with a proper measurement procedure, to improve the performance of low-cost, consumer-grade MEMS sensors. The performance of the method is assessed by means of an adequate prototype and compared with that assured by a commercial, expensive, tactical-grade MEMS inertial measurement unit, taken as reference. Obtained results highlight the promising reliability and efficacy of the method in estimating position, velocity, and attitude of vehicles; in particular, bias instability and random walk reduction greater than 25% is, in fact, experienced. Moreover, differences as low as 0.025 rad and 0.89 m are obtained when comparing position and attitude estimates provided by the prototype and those granted by the tactical-grade MEMS IMU.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sumidtra Prathep ◽  
Wilasinee Jitpakdee ◽  
Pittayapon Pitathawatchai ◽  
Sittichoke Anuntaseree

AbstractEmergency anterior neck access may be performed if intubation and ventilation fail. Practicing this life-saving procedure with manikins before facing a real-life emergency anterior neck access is required to do this procedure successfully when we encounter a difficult airway situation. The current manikins are expensive and thus are sometimes difficult to acquire in low-cost settings such as Thailand. We devise a cost-effective training manikin using less expensive materials but retaining the simple design of the trachea and skin areas which are flexible polyurethane (PU) foam and silicone, but which still had the same utility as the current manikins. Five items were evaluated, and then scores were rated by experienced physicians from 1 to 5 points for each item, 1 being the least and 5 the highest. The mean score concerning the appropriate size of the manikins was 4.55 ± 0.56. The mean score of the ease of use for practicing was 4.58 ± 0.59. The mean score of the similarity of the skin of the manikins to human skin was 3.85 ± 0.66. The mean score of the similarity of the trachea of the manikins to the human trachea was 3.80 ± 0.69. The mean score of the sensation of inserting the tube in the manikin compared to a real trachea was 3.90 ± 0.67. The mean overall benefit score of practicing on the manikins was 4.38 ± 0.45. Our trial indicates that this low-cost and simply designed manikin can be useful for practicing emergency airway management procedures to save patients who are struggling with lack of oxygen or intubation failure or failure of ventilation or other airway equipment such as endotracheal intubation and supraglottic airway devices (SGA).


Author(s):  
C. Yu ◽  
N. El-Sheimy

In this research, an indoor map aided INS/Wi-Fi integrated location based services (LBS) applications is proposed and implemented on smartphone platforms. Indoor map information together with measurements from an inertial measurement unit (IMU) and Received Signal Strength Indicator (RSSI) value from Wi-Fi are collected to obtain an accurate, continuous, and low-cost position solution. The main challenge of this research is to make effective use of various measurements that complement each other without increasing the computational burden of the system. The integrated system in this paper includes three modules: INS, Wi-Fi (if signal available) and indoor maps. A cascade structure Particle/Kalman filter framework is applied to combine the different modules. Firstly, INS position and Wi-Fi fingerprint position integrated through Kalman filter for estimating positioning information. Then, indoor map information is applied to correct the error of INS/Wi-Fi estimated position through particle filter. Indoor tests show that the proposed method can effectively reduce the accumulation positioning errors of stand-alone INS systems, and provide stable, continuous and reliable indoor location service.


Sign in / Sign up

Export Citation Format

Share Document