scholarly journals Nitrogen Application Practices to Reduce Cd Concentration in Rice (Oryza Sativa L.) Grains

Author(s):  
Qingyun Zhou ◽  
Hui Wang ◽  
Chao Xu ◽  
Shen Zheng ◽  
Meiyan Wu ◽  
...  

Abstract Cd pollution in paddy soils creates challenges in rice grain production, thereby threatening food security. The effectiveness of different base-tillering-panicle urea application ratio and the combined basal application of urea and Chinese milk vetch (CMV, Astragalus sinicus L.) in minimizing Cd accumulation in rice grains was explored in a Cd-contaminated acidic soil via a field experiment. The results indicated that under similar N application rates, an appropriate amount of urea applied at the panicle stage or the combined basal application of urea and CMV decreased Cd absorption by rice roots and its accumulation in rice grains, as compared with that of conventional N application (control). Furthermore, under a 3:4:3 base-tillering-panicle urea application ratio or for basal application of CMV at high levels, Cd concentrations in brown rice were significantly lower (40.7% and 34.1%, respectively) than that of control. Cd transport coefficient from root to straw was significantly higher than that of control when an appropriate amount of urea was applied at the panicle stage or urea and CMV were applied basally, whereas the Cd transport coefficient from straw to brown rice was relatively lower. Moreover, soil pH, or the concentrations of CEC and CaCl2-Cd under different N fertilizer treatment was not significantly different. However, rice grain yield increased by 29.4% with basal application of a high amount of CMV compared with that of control. An appropriate amount of urea applied at the panicle stage or the combined basal application of urea and CMV decreased Cd absorption by rice roots and inhibited its transport from straw to brown rice, thus reducing Cd concentration in brown rice. Therefore, combined with the key phase of Cd accumulation in rice, a reasonable urea application ratio or a basal application of high amounts of CMV can effectively reduce Cd concentration in brown rice.

2016 ◽  
Vol 369 ◽  
pp. 148-151
Author(s):  
J.V. Silva ◽  
C.M.R. Franco ◽  
E.M.A. Pereira ◽  
T.H.F. Andrade ◽  
A.G. Barbosa de Lima

Rice (Oryza sativa L.) is a greatly important socio-economic crop. Immediate threshing and drying of wet harvested grains, to reach 18–19% (w.b) moisture content, is a practical method used by individual farmers to slow deterioration and increase selling prices. However, rough rice grain is different from other grains because it has an outer cover shell (palea and lemma) and a bran layer. Thus, the heat and mass transfer processes that take place during grain drying are different from those of other cereal grains, so understanding the effect of different treatments, drying temperature, moisture content and the gradients in rice grains is essential to optimize the drying conditions. In this sense, the current study aims to analyze the moisture removal and its effects on the stress cracking and the number of brown rice grains (BRSMG CONAI variety) at the temperatures of 60 and 80°C.


2018 ◽  
Vol 15 (2) ◽  
Author(s):  
Nicole Colón Carrión ◽  
Chad Lozada Troche

Crops and stored grains are susceptible to pathogens that represent a threat to our health. The study presented herein compares the normal surface and endophytic fungal communities present on white and brown rice grains. One hundred grains of each rice variety was analyzed to determine their fungal contaminants and endophytes. Fungi were inoculated on SDA media, and purified in PDA media; morphological characterization was performed followed by amplification of the ITS region using PCR for all fungal isolates. Statistical analysis indicated significant differences between medium brown rice compared to white rice for surface and endophytic communities (p-value £ 0.05). In addition, a higher fungal diversity was found on brown rice grains compared to white rice. This variation may be due to differences in the processing methods used for each rice grain type. BLAST analysis revealed the presence of toxigenic strains of Aspergillus flavus, A.oryzae, Penicillium verrucosum, and P. viridicatum. The study of fungal growth in rice grains can contribute to the minimization of mycotoxin production by its prevention and control; therefore, decreasing crop contamination and human exposure to their metabolites. KEYWORDS: Fungi; Rice; Fungal contaminants; Fungal endophytes


2020 ◽  
Vol 12 (2) ◽  
pp. 552 ◽  
Author(s):  
Weronika Kruszelnicka ◽  
Andrzej Marczuk ◽  
Robert Kasner ◽  
Patrycja Bałdowska-Witos ◽  
Katarzyna Piotrowska ◽  
...  

Strength properties of grains have a significant impact on the energy demand of grinding mills. This paper presents the results of tests of strength and energy needed the for destruction of rice grains. The research aim was to experimentally determine mechanical and processing properties of the rice grains. The research problem was formulated in the form of questions: (1) what force and energy are needed to induce a rupture of rice grain of the Oryza sativa L. of long-grain variety? (2) what is the relationship between grain size and strength parameters and the energy of grinding rice grain of the species Oryza sativa L. long-grain variety? In order to find the answer to the problems posed, a static compression test of rice grains was done. The results indicate that the average forces needed to crush rice grain are 174.99 kg m·s−2, and the average energy is 28.03 mJ. There was no statistically significant relationship between the grain volume calculated based on the volumetric mass density Vρ and the crushing energy, nor between the volume Vρ and other strength properties of rice grains. In the case of Vs, a low negative correlation between strength σmin and a low positive correlation between the power inducing the first crack were found for the grain size related volume. A low negative correlation between the grain thickness a3, stresses σmin and work WFmax was found as well as a low positive correlation between thickness a3 and the force inducing the first crack Fmin.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1297
Author(s):  
Seung-Hyun Kim ◽  
Yu-Jin Yang ◽  
Ill-Min Chung

We investigated the effects of the type of rice and degree of milling (DOM) on the nutraceutical content and antioxidant activity of rice (Oryza sativa L.). The fatty acid (FA), vitamin E homolog, and phenolic contents in organic (OR), pesticide-free (PFR), and conventional rice (CR) decreased significantly with an increase in the DOM of rice grains, particularly for a DOM of 7 and 9 (p < 0.05). The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity also decreased with the DOM; particularly, this activity decreased significantly, by approximately 60%, in rice grains with a DOM between 7 and 11, as compared to that of brown rice (p < 0.05). α-Tocopherol (r = 0.854) and p-coumaric acid (r = 0.501) showed the strongest correlation with DPPH activity in each chemical group. Stepwise discriminant analysis enabled the correct original and cross-validated classification of 87.0% and 81.5% of rice types, respectively. Additionally, the original and cross-validated classification of rice DOM levels showed that, overall, 93.8% and 92.6% of rice samples were correctly classified. Our findings reveal variations in the nutraceutical levels and antioxidant activities in rice grains based on the rice type and DOM, which can help improve the nutritional evaluation of human-health-promoting rice grains.


2019 ◽  
Author(s):  
Wang Feijuan ◽  
Tan Haifeng ◽  
Zhang Yiting ◽  
Huang Lihong ◽  
Ding Yanfei ◽  
...  

Abstract Cadmium (Cd) contamination has been recognized as a major threat to the agricultural system and crop production which posing serious threat to human health. Salicylic acid (SA) serves as an important signaling molecule and plays an important role in against Cd toxicity. In the previous field experiments, we found SA spraying could reduce the Cd accumulation of rice grain grown in Cd-contaminated soil. This study investigated the effects and mechanisms of SA spraying on leaves of rice seedlings under Cd stress. Results showed that SA treatment could alleviate the Cd toxicity of rice not by changing the physical and chemical properties of the soil, but by increasing the activities of antioxidant enzymes to reduce the H 2 O 2 accumulation in rice. And the key factor of SA treatment reducing Cd accumulation in rice grain was the decreasing of Cd contents in rice leaves at the flowering stage. This indicated that SA could modulate the Cd accumulation of shoots to reduce the Cd translocation to rice grain. Furthermore, SA could increase the H 2 O 2 contents in a short-term to activate the SA-signaling pathway, and modulate the expression levels of Cd transporters ( OsLCT1 and OsLCD ) in rice leaves toraise Cd tolerance and reduce Cd accumulation in rice grain. Thus, SA spraying can be used as an effective measure to cope with Cd contamination in paddy soils.


Author(s):  
Debasis Chakrabarty

Rice (Oryza sativa L.) is amidst the great essential food crop that offers a staple food for most of the world’s populace. Arsenic (As) is a carcinogenic heavy metal, which harms human health. In Asian countries, a major source of human As-intake is rice grains and; contamination of paddy soils by As and accumulation of As in rice grains is one of the serious agricultural issues. Hence, it is important to mitigate the effects of As toxicity as much as possible. In an attempt to minimize As accumulation in grains various genes have been introduced in rice. The main objective of this review is to provide an overview of the arsenic problem and various biotechnological methods exploited for reducing As accumulation in rice grain.


Chemosphere ◽  
2020 ◽  
Vol 258 ◽  
pp. 127135 ◽  
Author(s):  
Junying Yang ◽  
Xian Chen ◽  
Wencong Lu ◽  
Runcheng Chen ◽  
Mengnan Liu ◽  
...  

2008 ◽  
Vol 71 (12) ◽  
pp. 2453-2459 ◽  
Author(s):  
JOHN TANG YEW HUAT ◽  
YAP KOK LEONG ◽  
HING HIANG LIAN

This study examined whether the survival of Vibrio cholerae O1 on contaminated cooked rice was influenced by the type of rice. Vibrios survived unchanged on clumps of glutinous white rice (wet, grains adhered) held at room temperature for 24 h. On nonglutinous white rice (slightly moist, grains separate), 30% viable vibrios remained at 24 h. On nonglutinous brown rice (moist, separate, covered with a mucus-like substance), the number of vibrios increased 2.7-fold at 24 h. Survival rates of vibrios on the surfaces of a row of five cooked rice grains after 2 h of exposure at room temperature were 86, 29, 12, and 4% for glutinous rice, white rice, and the endosperm and pericarp of brown rice, respectively. (Each boiled brown rice grain surface was partly pericarp and partly endosperm, which became exposed by a rupture of the pericarp.) Covering each inoculated grain with a similar cooked rice grain surface increased the corresponding figures to 93, 99, 60, and 94%. Scanning electron microscopy revealed that each type of cooked grain surface possessed a distinct microtopography. For example, the surfaces of glutinous rice grains consisted of separated overlapping strips with many holes, while the pericarps of brown rice were flat interspersed with small pits. In conclusion, each type of boiled rice produced a distinct survival pattern of V. cholerae O1 caused by both the distinct gross features and the fine surface characteristics of the rice. The significance of this finding is that the type of rice consumed can be a factor in cholera transmission by contaminated rice.


Sign in / Sign up

Export Citation Format

Share Document