scholarly journals Rio1 downregulates centromeric RNA levels to promote the timely assembly of structurally fit kinetochores.

Author(s):  
Peter De Wulf ◽  
Ksenia Smurova ◽  
Stefania Stancari ◽  
Carmela Irene ◽  
Giovanna Berto ◽  
...  

Abstract Kinetochores assemble on centromeres (CENs) via histone H3 variant CENP-A and low levels of CEN transcripts. RNA polymerase II (RNAPII) activity is restrained by the CEN histone code, while CEN RNA concentrations are reduced by the nuclear exosome. Using S. cerevisiae, we add kinase Rio1 to this scheme as it downregulates RNAPII, and promotes CEN RNA turnover via exoribonuclease Rat1. Transcription factor Cbf1 and the assembled kinetochore further restrain CEN transcription. CEN transcripts exist as long (up to 11,000nt) and short RNAs (119±40nt), which may underlie CEN identity and kinetochore recruitment. While also curtailed by Rio1, Rat1, and the exosome, periCEN RNAs (<200nt) accumulate at levels that are one order of magnitude higher than the CEN transcripts. Depleting Rio1 causes CEN and periCEN RNA buildup, kinetochore malformation, and chromosome loss. Depleting human orthologue RioK1 leads to CEN RNA accumulation and micronuclei formation, suggesting that Rio1/RioK1 activity at centromeres is conserved.

Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 973-981
Author(s):  
Kevin C Keith ◽  
Molly Fitzgerald-Hayes

Abstract Each Saccharomyces cerevisiae chromosome contains a single centromere composed of three conserved DNA elements, CDE I, II, and III. The histone H3 variant, Cse4p, is an essential component of the S. cerevisiae centromere and is thought to replace H3 in specialized nucleosomes at the yeast centromere. To investigate the genetic interactions between Cse4p and centromere DNA, we measured the chromosome loss rates exhibited by cse4 cen3 double-mutant cells that express mutant Cse4 proteins and carry chromosomes containing mutant centromere DNA (cen3). When compared to loss rates for cells carrying the same cen3 DNA mutants but expressing wild-type Cse4p, we found that mutations throughout the Cse4p histone-fold domain caused surprisingly large increases in the loss of chromosomes carrying CDE I or CDE II mutant centromeres, but had no effect on chromosomes with CDE III mutant centromeres. Our genetic evidence is consistent with direct interactions between Cse4p and the CDE I-CDE II region of the centromere DNA. On the basis of these and other results from genetic, biochemical, and structural studies, we propose a model that best describes the path of the centromere DNA around a specialized Cse4p-nucleosome.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Jessie Colin ◽  
Domenico Libri ◽  
Odil Porrua

Recent studies on yeast transcriptome have revealed the presence of a large set of RNA polymerase II transcripts mapping to intergenic and antisense regions or overlapping canonical genes. Most of these ncRNAs (ncRNAs) are subject to termination by the Nrd1-dependent pathway and rapid degradation by the nuclear exosome and have been dubbed cryptic unstable transcripts (CUTs). CUTs are often considered as by-products of transcriptional noise, but in an increasing number of cases they play a central role in the control of gene expression. Regulatory mechanisms involving expression of a CUT are diverse and include attenuation, transcriptional interference, and alternative transcription start site choice. This review focuses on the impact of cryptic transcription on gene expression, describes the role of the Nrd1-complex as the main actor in preventing nonfunctional and potentially harmful transcription, and details a few systems where expression of a CUT has an essential regulatory function. We also summarize the most recent studies concerning other types of ncRNAs and their possible role in regulation.


2007 ◽  
Vol 4 (4) ◽  
pp. 2441-2491 ◽  
Author(s):  
M. S. Twardowski ◽  
H. Claustre ◽  
S. A. Freeman ◽  
D. Stramski ◽  
Y. Huot

Abstract. During the BIOSOPE field campaign October–December 2004, measurements of inherent optical properties from the surface to 500 m depth were made with a ship profiler at stations covering over ~8000 km through the Southeast Pacific Ocean. Data from a ~3000 km section containing the very clearest waters in the central gyre are reported here. The total volume scattering function at 117°, βt(117°), was measured with a WET Labs ECO-BB3 sensor at 462, 532, and 650 nm with estimated uncertainties of 2×10−5, 5×10−6, and 2×10−6 m−1 sr−1, respectively. These values were approximately 6%, 3%, and 3% of the scattering by pure seawater at their respective wavelengths. From a methodological perspective, there were several results: – bbp distributions were resolvable even though some of the values from the central gyre were an order of magnitude lower than the lowest previous measurements in the literature; – Direct in-situ measurements of instrument dark offsets were necessary to accurately resolve backscattering at these low levels; – accurate pure seawater backscattering values are critical in determining particulate backscattering coefficients in the open ocean (not only in these very clear waters); the pure water scattering values determined by Buiteveld et al. (1994) with a [1 + 0.3S/37] adjustment for salinity based on Morel (1974) appear to be the most accurate estimates, with aggregate accuracies as low as a few percent; and – closure was demonstrated with subsurface reflectance measurements reported by Morel et al. (2007) within instrument precisions, a useful factor in validating the backscattering measurements. This methodology enabled several observations with respect to the hydrography and the use of backscattering as a biogeochemical proxy: – The clearest waters sampled were found at depths between 300 and 350 m, from 23.5° S, 118° W to 26° S, 114° W, where total backscattering at 650 nm was not distinguishable from pure seawater; – Distributions of particulate backscattering bbp across the central gyre exhibited a broad particle peak centered ~100 m; – The particulate backscattering ratio typically ranged between 0.4% and 0.6% through the majority of the central gyre from the surface to ~210 m, indicative of "soft" water-filled particles with low bulk refractive index; and – bbp at 532 and 650 nm showed a distinct secondary deeper layer centered ~230 m that was absent in particulate attenuation cp data. The particulate backscattering ratio was significantly higher in this layer than in the rest of the water column, reaching 1.2% in some locations. This high relative backscattering, along with the pigment composition and ecological niche of this layer, appear to be consistent with the coccolithophorid F. profunda. Moreover, results were consistent with several expectations extrapolated from theory and previous work in oceanic and coastal regions, supporting the conclusion that particulate and total backscattering could be resolved in these extremely clear natural waters.


1983 ◽  
Vol 46 (10) ◽  
pp. 893-900 ◽  
Author(s):  
R. FRANK ◽  
H. E. BRAUN ◽  
G. FLEMING

Between 1969 and 1981, 2482 bovine and 554 porcine carcasses were sampled at provincially inspected abattoirs across Ontario. Abdominal fats were composited into 505 bovine and 122 porcine samples for analyses of organochlorine insecticides and industrial chemicals. Mean ∑DDT residues decreased from 257 μg/kg in 1969–70 to 12 μg/kg in 1981 for bovine fats and from 356 μg/kg in 1971–72 to 5 μg/kg in 1981 for porcine fats. Similar decreases in residue levels were observed for PCB. Dieldrin, with lower initial residues (i.e. 33 μg/kg in bovine fat and 12 μg/kg in porcine), decreased an order of magnitude over this same period. All decreases fitted first order logarithmic regression equations. Chloradane and heptachlor epoxide were rarely observed in bovine or porcine fat; however, the incidence in bovine fat increased after 1973 following the removal of aldrin, dieldrin and heptachlor in 1969 for soil insect control and the subsequent increased use of chlordane. Chlordane appeared at low levels (1–2 μg/kg) in bovine fat during the mid 1970s and remained detectable through 1981. Lindane residues in both bovine and porcine fat fluctuated from year to year and appeared to vary with the need to control insect pests. While present (2 to 39 μg/kg) in the early 1970s, lindane residues disappeared by mid 1970 but reappeared in fatty tissues in 1981 (3–13 μg/kg). A limited number of samples were analyzed for organophosphorus insecticides between 1973 and 1980 and residues were occasionally found. In 1981, the analyses became routine and 3.6% of bovine samples were found to contain detectable residues of fenthion; only 2 of 197 bovine samples exceeded the maximum residue levels permitted under the Food and Drug Act.


2019 ◽  
Vol 102 (3) ◽  
pp. 671-679 ◽  
Author(s):  
Yanina S Bogliotti ◽  
Nhi Chung ◽  
Erika E Paulson ◽  
James Chitwood ◽  
Michelle Halstead ◽  
...  

Abstract Full-grown oocytes are transcriptionally quiescent. Following maturation and fertilization, the early stages of embryonic development occur in the absence (or low levels) of transcription that results in a period of development relying on maternally derived products (e.g., mRNAs and proteins). Two critical steps occur during the transition from maternal to embryo control of development: maternal mRNA clearance and embryonic genome activation with an associated dramatic reprogramming of gene expression required for further development. By combining an RNA polymerase II inhibitor with RNA sequencing, we were able not only to distinguish maternally derived from embryonic transcripts in bovine preimplantation embryos but also to establish that embryonic gene activation is required for clearance of maternal mRNAs as well as to identify putative transcription factors that are likely critical for early bovine development.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Alfonso González de Prádena ◽  
Adrián Sánchez Jimenez ◽  
David San León ◽  
Peter Simmonds ◽  
Juan Antonio García ◽  
...  

ABSTRACT The presence of CpG and UpA dinucleotides is restricted in the genomes of animal RNA viruses to avoid specific host defenses. We wondered whether a similar phenomenon exists in nonanimal RNA viruses. Here, we show that these two dinucleotides, especially UpA, are underrepresented in the family Potyviridae, the most important group of plant RNA viruses. Using plum pox virus (PPV; Potyviridae family) as a model, we show that an increase in UpA frequency strongly diminishes virus accumulation. Remarkably, unlike previous observations in animal viruses, PPV variants harboring CpG-rich fragments display just faint (or no) attenuation. The anticorrelation between UpA frequency and viral fitness additionally demonstrates the relevance of this particular dinucleotide: UpA-high mutants are attenuated in a dose-dependent manner, whereas a UpA-low variant displays better fitness than its parental control. Using high-throughput sequencing, we also show that UpA-rich PPV variants are genetically stable, without apparent changes in sequence that revert and/or compensate for the dinucleotide modification despite its attenuation. In addition, we also demonstrate here that the PPV restriction of UpA-rich variants works independently of the classical RNA silencing pathway. Finally, we show that the anticorrelation between UpA frequency and RNA accumulation applies to mRNA-like fragments produced by the host RNA polymerase II. Together, our results inform us about a dinucleotide-based system in plant cells that controls diverse RNAs, including RNA viruses. IMPORTANCE Dinucleotides (combinations of two consecutive nucleotides) are not randomly present in RNA viruses; in fact, the presence of CpG and UpA is significantly repressed in their genomes. Although the meaning of this phenomenon remains obscure, recent studies with animal-infecting viruses have revealed that their low CpG/UpA frequency prevents virus restriction via a host antiviral system that recognizes, and promotes the degradation of, CpG/UpA-rich RNAs. Whether similar systems act in organisms from other life kingdoms has been unknown. To fill this gap in our knowledge, we built several synthetic variants of a plant RNA virus with deoptimized dinucleotide frequencies and analyzed their viral fitness and genome adaptation. In brief, our results inform us for the first time about an effective dinucleotide-based system that acts in plants against viruses. Remarkably, this viral restriction in plants is reminiscent of, but not identical to, the equivalent antiviral response in animals.


2007 ◽  
Vol 4 (6) ◽  
pp. 1041-1058 ◽  
Author(s):  
M. S. Twardowski ◽  
H. Claustre ◽  
S. A. Freeman ◽  
D. Stramski ◽  
Y. Huot

Abstract. During the BIOSOPE field campaign October–December 2004, measurements of inherent optical properties from the surface to 500 m depth were made with a ship profiler at stations covering over 8000 km through the Southeast Pacific Ocean. Data from a ~3000 km section containing the very clearest waters in the central gyre are reported here. The total volume scattering function at 117°, βt(117°), was measured with a WET Labs ECO-BB3 sensor at 462, 532, and 650 nm with estimated uncertainties of 2×10-5, 5×10-6, and 2×10-6 m−1 sr−1, respectively. These values were approximately 6%, 3%, and 3% of the volume scattering by pure seawater at their respective wavelengths. From a methodological perspective, there were several results: – distributions were resolvable even though some of the values from the central gyre were an order of magnitude lower than the lowest previous measurements in the literature; – Direct in-situ measurements of instrument dark offsets were necessary to accurately resolve backscattering at these low levels; – accurate pure seawater backscattering values are critical in determining particulate backscattering coefficients in the open ocean (not only in these very clear waters); the pure water scattering values determined by Buiteveld et al. (1994) with a [1+0.3S/37] adjustment for salinity based on Morel (1974) appear to be the most accurate estimates, with aggregate accuracies as low as a few percent; and – closure was demonstrated with subsurface reflectance measurements reported by Morel et al. (2007) within instrument precisions, a useful factor in validating the backscattering measurements. This methodology enabled several observations with respect to the hydrography and the use of backscattering as a biogeochemical proxy: –The clearest waters sampled were found at depths between 300 and 350 m, from 23.5° S, 118° W to 26° S, 114° W, where total backscattering at 650 nm was not distinguishable from pure seawater; –Distributions of particulate backscattering bbp across the central gyre exhibited a broad particle peak centered ~100 m; –The particulate backscattering ratio typically ranged between 0.4% and 0.6% at 650 nm through the majority of the central gyre from the surface to ~210 m, indicative of "soft" water-filled particles with low bulk refractive index; and – bbp showed a distinct secondary deeper layer centered ~230 m that was absent in particulate attenuation cp data. The particulate backscattering ratio was significantly higher in this layer than in the rest of the water column, reaching 1.2% in some locations. This high relative backscattering, along with the pigment composition and ecological niche of this layer, appear to be consistent with the coccolithophorid Florisphaera profunda. Moreover, results were consistent with several expectations extrapolated from theory and previous work in oceanic and coastal regions, supporting the conclusion that particulate and total backscattering could be resolved in these extremely clear natural waters.


2009 ◽  
Vol 29 (15) ◽  
pp. 4033-4044 ◽  
Author(s):  
Christine Mosrin-Huaman ◽  
Romy Honorine ◽  
A. Rachid Rahmouni

ABSTRACT In eukaryotic cells, the nascent pre-mRNA molecule is coated sequentially with a large set of processing and binding proteins that mediate its transformation into an export-competent ribonucleoprotein particle (mRNP) that is ready for translation in the cytoplasm. We have implemented an original assay that monitors the dynamic interplay between transcription and mRNP biogenesis and that allows the screening for new factors linking mRNA synthesis to translation in Saccharomyces cerevisiae. The assay is based on the perturbation of gene expression induced by the bacterial Rho factor, an RNA-dependent helicase/translocase that acts as a competitor at one or several steps of mRNP biogenesis in yeast. We show that the expression of Rho in yeast leads to a dose-dependent growth defect that stems from its action on RNA polymerase II-mediated transcription. Rho expression induces the production of aberrant transcripts that are degraded by the nuclear exosome. A screen for dosage suppressors of the Rho-induced growth defect identified several genes that are involved in the different steps of mRNP biogenesis and export, as well as other genes with both known functions in transcription regulation and unknown functions. Our results provide evidence for an extensive cross talk between transcription, mRNP biogenesis, and export. They also uncover new factors that potentially are involved in these interconnected events.


2017 ◽  
Vol 37 (18) ◽  
Author(s):  
Jonathan Merran ◽  
Jeffry L. Corden

ABSTRACT Termination of Saccharomyces cerevisiae RNA polymerase II (Pol II) transcripts occurs through two alternative pathways. Termination of mRNAs is coupled to cleavage and polyadenylation while noncoding transcripts are terminated through the Nrd1-Nab3-Sen1 (NNS) pathway in a process that is linked to RNA degradation by the nuclear exosome. Some mRNA transcripts are also attenuated through premature termination directed by the NNS complex. In this paper we present the results of nuclear depletion of the NNS component Nab3. As expected, many noncoding RNAs fail to terminate properly. In addition, we observe that nitrogen catabolite-repressed genes are upregulated by Nab3 depletion.


Sign in / Sign up

Export Citation Format

Share Document