scholarly journals Study on the effect of Koumiss on the intestinal flora of mice infected with Toxoplasma gondii

Author(s):  
Xinlei Yan ◽  
Wenying Han ◽  
Xindong Jin ◽  
Yufei Sun ◽  
Jialu Gao ◽  
...  

Abstract Toxoplasma gondii is a worldwide food-borne parasite that can infect almost all warm-blooded animals, including humans. To date, there are no effective drugs to prevent or eradicate T. gondii infection. Recent studies have shown that probiotics could influence the relationship between the microbiota and parasites in the host. Koumiss has been used to treat many diseases based on its probiotic diversity. Therefore, we explored the effect of koumiss on T. gondii infection via its effect on the host intestinal flora. BALB/c mice were infected with T. gondii and treated with PBS, koumiss and mares’ milk. Brain cysts were counted, and long-term changes in the microbiota and the effect of koumiss on gut flora were investigated with high-throughput sequencing technology. The results suggested that koumiss treatment significantly decreased the cyst counts in the brain (P < 0.05). Moreover, T. gondii infection changed the microbiota composition, and koumiss treatment increased the relative abundance of Lachnospiraceae and Akkermansia muciniphila, which were associated with preventing T. gondii infection. Moreover, koumiss could inhibit or ameliorate T. gondii infection by increasing the abundance of certain bacteria that control unique metabolic pathways. The study not only established a close interaction among the host, intracellular pathogens and intestinal flora but also provided a novel focus for drug development to prevent and eradicate T. gondii infection.

2021 ◽  
Author(s):  
Oscar A. Mendez ◽  
Emiliano Flores Machado ◽  
Jing Lu ◽  
Anita A. Koshy

AbstractToxoplasma gondii is an intracellular parasite that causes a long-term latent infection of neurons. Using a custom MATLAB-based mapping program in combination with a mouse model that allows us to permanently mark neurons injected with parasite proteins, we found that Toxoplasma-injected neurons (TINs) are heterogeneously distributed in the brain, primarily localizing to the cortex followed by the striatum. Using immunofluorescence co-localization assays, we determined that cortical TINs are commonly (>50%) excitatory neurons (FoxP2+) and that striatal TINs are often (>65%) medium spiny neurons (MSNs) (FoxP2+). As MSNs have highly characterized electrophysiology, we used ex vivo slices from infected mice to perform single neuron patch-clamping on striatal TINs and neighboring uninfected MSNs (bystander MSNs). These studies demonstrated that TINs have highly abnormal electrophysiology, while the electrophysiology of bystander MSNs was akin to that of MSNs from uninfected mice. Collectively, these data offer new neuroanatomic and electrophysiologic insights into CNS toxoplasmosis.


Author(s):  
Lia Almeida Mapurunga ◽  
Elcyana Bezerra Elcyana Bezerra Carvalho

A neurociência é uma ciência natural que estuda a função e a estrutura, que compõem o cérebro. A educação, embora tenha outra natureza, tem tido muitos benefícios com as contribuições que a neurociência tem para oferecer. Como o cérebro aprende e por que aprende traz para o ensino o objetivo e a função de criar condições (entre estratégias, recursos e adequação do meio), para que ocorra a aprendizagem. E, para que essa ocorra, é necessário que as funções mentais superiores, como a memória, estejam envolvidas. O objetivo deste estudo consiste em fazer uma revisão de literatura para conhecer a função da memória de longo prazo na aprendizagem, analisar os mecanismos neurobiológicos, que ocorrem durante esse processo e algumas estratégias de aprendizagem, que se utilizam da memória como recurso. Para isso, foi realizado no período de agosto a outubro de 2016, um levantamento bibliográfico nas bases de dados Scielo, Capes, Bireme e Google Acadêmico, buscando artigos científicos, que poderiam trazer alguma contribuição na construção dessa pesquisa. Foram selecionados, preferencialmente, os que continham enfoque na relação entre aprendizagem e memória, tanto na perspectiva da neurociência, quanto da psicologia cognitiva, trazendo argumentos que pudessem  comprovar o entendimento das estratégias de aprendizagem, a partir da memória de longo prazo. Também foram selecionados livros que apresentavam apoio às temáticas discorridas para esse trabalho, possibilitando essa relação. Os resultados apontam que estratégias de aprendizagens, que utilizam a memória, produzem efeitos positivos para a retenção de longo prazo.Palavras-chave: Aprendizagem. Neurociências. Estratégias de Aprendizagem.AbstractNeuroscience is a natural science that studies the function and structure that forms the brain. Although education has another nature, it has had many benefits from the contributions that neuroscience has to offer. How the brain learns and why it learns brings to teaching the intent and function to create conditions (among strategies, resources and suitability to the environment) so that learning can happen. And, for it to occur, it is  necessary that higher mental functions, such as memory, beinvolved. The purpose of this study is to do a literature review to get to know the function of long-term memory on the learning process, to analyze the neurobiological mechanisms that happen during that process, and some learning strategies that use memory as a resource. Therefore a bibliographical survey was conducted at the databases Scielo, Capes, Bireme and Academic Google, from August to October 2016, searching for scientific articles that could contribute somehow on the construction of this research. The articles that used the neuroscience perspective or the cognitive psychology to focus on the relationship  between learning and memory were chosen, preferentially those whose arguments could prove the  learning strategies understanding about he long-term memory. Books supporting the themes discussed for this work were also selected, creating, therefore, a relationship. The results show that learning strategies that use memory have positive effects for long-term retention.Keywords: Learning. Neuroscience. Learning Strategies.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250079
Author(s):  
Fernanda Ferreira Evangelista ◽  
Willian Costa-Ferreira ◽  
Francini Martini Mantelo ◽  
Lucimara Fátima Beletini ◽  
Amanda Hinobu de Souza ◽  
...  

The aim of this study was to investigate the effect of rosuvastatin treatment on memory impairment, and anxiogenic-like effects in mice chronically infected with Toxoplasma gondii. For this, Balb/c mice were infected orally with chronic ME-49 strain of Toxoplasma gondii. Oral treatment with rosuvastatin (40mg/kg/day) started on the 51st day post-infection and was performed daily for 21 days. After completion of treatment, anxiety-like effects and locomotion were investigated in the open field (OF) test, whereas novel object recognition (NOR) test was used for evaluation of short- and long-term memory. At the end of the experiments, the brain was collected for Toxoplasma gondii DNA quantification and histopathological analysis. Infection with ME-49 strain decreased the time spent in the center of OF, indicating an anxiogenic effect, without affecting total and peripheral locomotion. Rosuvastatin treatment inhibited the change in the center time. Besides, pharmacological treatment increased total and central locomotion in both non-infected and infected animals. Infection also impaired both short- and long-term memory in the NOR test, and these effects were reverted by rosuvastatin treatment. In addition to effects in behavioral changes, rosuvastatin also reduced parasite load in the brain and attenuated signs of brain inflammation such as perivascular cuffs, inflammatory cell infiltration and tissue damage. These findings indicate for the first time the efficacy of rosuvastatin in treatment of memory impairment and anxiogenic effect evoked by infection with Toxoplasma gondii. These effects might be mediated by reduced cyst load, which in turn decrease inflammation and damage in the brain.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Oscar A Mendez ◽  
Emiliano Flores Machado ◽  
Jing Lu ◽  
Anita Koshy

Toxoplasma gondii is an intracellular parasite that causes a long-term latent infection of neurons. Using a custom MATLAB-based mapping program in combination with a mouse model that allows us to permanently mark neurons injected with parasite proteins, we found that Toxoplasma-injected neurons (TINs) are heterogeneously distributed in the brain, primarily localizing to the cortex followed by the striatum. In addition, we determined that cortical TINs are commonly (>50%) excitatory neurons (FoxP2+) and that striatal TINs are often (>65%) medium spiny neurons (MSNs) (FoxP2+). By performing single neuron patch-clamping on striatal TINs and neighboring uninfected MSNs, we discovered that TINs have highly aberrant electrophysiology. As approximately 90% of TINs will die by 8 weeks post-infection, this abnormal physiology suggests that injection with Toxoplasma protein— either directly or indirectly— affects neuronal health and survival. Collectively, these data offer the first insights into which neurons interact with Toxoplasma and how these interactions alter neuron physiology in vivo.


Author(s):  
Yakup Durmaz ◽  
Habip Güvenç ◽  
Selman Kaymaz

The purpose of this study is to explain the concept and benefits of relationship marketing. The relationship marketing term that includes establishing short, medium and long-term ties-relationships with the customers, continuing and developing these relationships was first introduced by Berry in 1983. The concept of relationship marketing is a vital and important step in ensuring profit satisfaction and customer satisfaction in recent years, as well as achieving competitive advantage in the global market. Almost all of the big corporate enterprises in our country have turned to relationship marketing models and practices on issues such as ensuring customer satisfaction, determining customer expectations, product development, strengthening customer loyalty, product development and product differentiation.


2021 ◽  
pp. 1-62
Author(s):  
Kit S. Prendergast ◽  
Jair E. Garcia ◽  
Scarlett R. Howard ◽  
Zong-Xin Ren ◽  
Stuart J. McFarlane ◽  
...  

Abstract The field of bioaesthetics seeks to understand how modern humans may have first developed art appreciation and is informed by considering a broad range of fields including painting, sculpture, music and the built environment. In recent times there has been a diverse range of art and communication media representing bees, and such work is often linked to growing concerns about potential bee declines due to a variety of factors including natural habitat fragmentation, climate change, and pesticide use in agriculture. We take a broad view of human art representations of bees to ask if the current interest in artistic representations of bees is evidenced throughout history, and in different regions of the world prior to globalisation. We observe from the earliest records of human representations in cave art over 8,000 years old through to ancient Egyptian carvings of bees and hieroglyphics, that humans have had a long-term relationship with bees especially due to the benefits of honey, wax, and crop pollination. The relationship between humans and bees frequently links to religious and spiritual representations in different parts of the world from Australia to Europe, South America and Asia. Art mediums have frequently included the visual and musical, thus showing evidence of being deeply rooted in how different people around the world perceive and relate to bees in nature through creative practice. In modern times, artistic representations extend to installation arts, mixed-media, and the moving image. Through the examination of the diverse inclusion of bees in human culture and art, we show that there are links between the functional benefits of associating with bees, including sourcing sweet-tasting nutritious food that could have acted, we suggest, to condition positive responses in the brain, leading to the development of an aesthetic appreciation of work representing bees.


2019 ◽  
Author(s):  
Robert F Kirsch ◽  
A Bolu Ajiboye ◽  
Jonathan P Miller

UNSTRUCTURED Intracortical brain-machine interfaces are a promising technology for allowing people with chronic and severe neurological disorders that resulted in loss of function to potentially regain those functions through neuroprosthetic devices. The penetrating microelectrode arrays used in almost all previous studies of intracortical brain-machine interfaces in people had a limited recording life (potentially due to issues with long-term biocompatibility), as well as a limited number of recording electrodes with limited distribution in the brain. Significant advances are required in this array interface to deal with the issues of long-term biocompatibility and lack of distributed recordings. The Musk and Neuralink manuscript proposes a novel and potentially disruptive approach to advancing the brain-electrode interface technology, with the potential of addressing many of these hurdles. Our commentary addresses the potential advantages of the proposed approach, as well as the remaining challenges to be addressed.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yi Li ◽  
Lu Yin ◽  
Zhongmin Fan ◽  
Binxiao Su ◽  
Yu Chen ◽  
...  

Neurological dysfunction, one of the severe manifestations of sepsis in patients, is closely related to increased mortality and long-term complications in intensive care units, including sepsis-associated encephalopathy (SAE) and chronic pain. The underlying mechanisms of these sepsis-induced neurological dysfunctions are elusive. However, it has been well established that microglia, the dominant resident immune cell in the central nervous system, play essential roles in the initiation and development of SAE and chronic pain. Microglia can be activated by inflammatory mediators, adjacent cells and neurotransmitters in the acute phase of sepsis and then induce neuronal dysfunction in the brain. With the spotlight focused on the relationship between microglia and sepsis, a deeper understanding of microglia in SAE and chronic pain can be achieved. More importantly, clarifying the mechanisms of sepsis-associated signaling pathways in microglia would shed new light on treatment strategies for SAE and chronic pain.


Author(s):  
Maria Angiola Crivellaro ◽  
Giancarlo Ottaviano ◽  
Pietro Maculan ◽  
Alfonso Luca Pendolino ◽  
Liviano Vianello ◽  
...  

A group of 142 bakers was studied in order to investigate the relationship between higher/lower respiratory signs/symptoms and inflammation biomarkers and occupational exposure to flour dust. A complete upper and lower respiratory tract evaluation was performed. Seven percent of bakers complained of lower respiratory symptoms, while 22% of them complained of upper respiratory symptoms. Fifty five percent of the bakers were allergic, and 37.1% showed sensitization to occupational allergens. Abnormal spirometries were found in 15% of bakers, while fractional exhaled nitric oxide (FeNO) was above the normal reference in 24.5% of them. Moreover, 23.8% of bakers were found to be hyposmic. Population mean peak nasal inspiratory flow (PNIF) was in the normal range even if almost all the workers suffered from neutrophilic rhinitis at nasal cytology with the number of nasal neutrophils increasing with the increase of the duration of exposure to flour dust (p = 0.03). PNIF and FEV1 (forced expiratory volume in the 1st second) showed a positive correlation (p = 0.03; r = 0.19). The Tiffeneau index decreased with the increase of dust (p = 0.017). A similar result was obtained once we divided our population into smokers and non-smokers (p = 0.021). Long-term exposure to bakery dusts can lead to a status of minimal nasal inflammation and allergy.


2013 ◽  
Vol 27 (2) ◽  
pp. 76-83 ◽  
Author(s):  
Casey S. Gilmore ◽  
George Fein

Event-related, target stimulus-phase-locked (evoked) brain activity in both the time and time-frequency (TF) domains (the P3b ERP; evoked theta oscillations) has been shown to be reduced in alcoholics. Recently, studies have suggested that there is alcohol-related information in the non-stimulus-phase-locked (induced) theta TF activity. We applied TF analysis to target stimulus event-related EEG recorded during an oddball task from 41 long-term abstinent alcoholics (LTAA) and 74 nonalcoholic controls (NAC) to investigate the relationship between P3b, evoked theta, and induced theta activity. Results showed that an event-related synchronization (ERS) of induced theta (1) was larger in LTAA compared to NAC, and (2) was sensitive to differences between LTAA and NAC groups that was independent of the differences accounted for by P3b amplitude or evoked theta. These findings suggest that increased induced theta ERS may likely be a biomarker for a morbid effect of alcohol abuse on brain function.


Sign in / Sign up

Export Citation Format

Share Document