scholarly journals Palm oil extracts’ protected against cadmium chloride poisoning via inhibition of oxidative stress in rats”

Author(s):  
Patrick Chukwuyenum ICHIPI-IFUKOR ◽  
Samuel Ogheneovo ASAGBA ◽  
Chibueze NWOSE ◽  
Joseph Chukwufumnanya MORDI ◽  
John Chukwuma OYEM

Abstract Background: The probable mechanism of an earlier reported capacity of palm oil extracts to confer protection against high dose cadmium poisoning in rats was reported in this study. Similar experimental design earlier reported by us was retained. Rats therefore were sacrificed at intervals of twelve; twenty four and forty eight hours post CdCl2 insult. Results: Oxidative stress and antioxidant status (malondialdehyde, superoxide dismutase, catalase and glutathione) were assessed in tissues (liver, kidney, heart, brain, muscle) and serum. Oxidative stress indicators showed a significantly (p<0.05) increased lipid peroxidation and alterations in antioxidant defence systems occasioned by drop in catalase and superoxide dismutase enzymes (serum, liver, heart, brain and kidneys) of the rats. Also observed were significant (p<0.05) reduction in the non-enzymatic antioxidant reduced glutathione over time. Pre-administration of rats with the crude palm oil and its extracts modulated cadmium mediated depletion of the antioxidant capacities of rats acutely exposed to cadmium and rising lipid peroxidation profile. Conclusions: Regulation of stress and antioxidant response was the underlying mechanism by which the extracts conferred protection against high dose cadmium insult thus suggesting its potential as a viable therapeutic target against its deleterious effects.

2022 ◽  
Vol 46 (1) ◽  
Author(s):  
Patrick Chukwuyenum Ichipi-Ifukor ◽  
Samuel Ogheneovo Asagba ◽  
Chibueze Nwose ◽  
Joseph Chukwufumnanya Mordi ◽  
John Chukwuma Oyem

Abstract Background The probable mechanism of an earlier reported capacity of palm oil extracts to confer protection against high dose cadmium poisoning in rats was reported in this study. Similar experimental design earlier reported by us was retained. Rats therefore were sacrificed at intervals of twelve; twenty four and forty eight hours post CdCl2 insult. Results Oxidative stress and antioxidant status (malondialdehyde, superoxide dismutase, catalase and glutathione) were assessed in tissues (liver, kidney, heart, brain, muscle) and serum. Oxidative stress indicators showed a significantly (p < 0.05) increased lipid peroxidation and alterations in antioxidant defence systems occasioned by drop in catalase and superoxide dismutase enzymes (serum, liver, heart, brain and kidneys) of the rats. Also observed were significant (p < 0.05) reduction in the non-enzymatic antioxidant reduced glutathione over time. Pre-administration of rats with the crude palm oil and its extracts modulated cadmium mediated depletion of the antioxidant capacities of rats acutely exposed to cadmium and rising lipid peroxidation profile. Conclusions Regulation of stress and antioxidant response was the underlying mechanism by which the extracts conferred protection against high dose cadmium insult thus suggesting its potential as a viable therapeutic target against its deleterious effects. Graphical Abstract


2020 ◽  
Vol 63 (7) ◽  
pp. 99-105
Author(s):  
Viktor V. Ivanishchev ◽  

We studied alterations in oxidative stress indicators (hydrogen peroxide, superoxide radical, lipid peroxidation – LPO) and alterations in the activity of antioxidant enzymes (catalase, ascorbate peroxidase, guaiacol peroxidase, glutathione reductase) in triticale shoots (Triticosecale) during short-term (0-96 h) sodium chloride stress (120 mM) with statistical methods: principal component analysis (PCA) and cluster analysis. Analysis of alterations in the activity of enzymes with the PCA method does not allow them to be unambiguously included in a single group, despite the fact that they all belong to antioxidant enzymes. The inclusion of oxidative stress indicators in this analysis did not make the picture simpler. Using the cluster analysis method, it can be concluded that under conditions of short-term chloride stress in the shoots of triticale, much more catalase (than other enzymes studied) is associated with the protection of membranes from lipid peroxidation than with the utilization of hydrogen peroxide. This is also reflected by the highest correlation coefficients: catalase – LPO (0.94), catalase – hydrogen peroxide (0.79). The formation of primary clusters between ascorbate peroxidase and glutathione reductase reflect the significance of the association of the ascorbate – glutathione cycle with the processes of utilization of reactive oxygen species (primarily hydrogen peroxide) under experimental conditions. It was also shown that under conditions of short-term chloride stress in the shoots of triticale, guaiacol peroxidase plays the least role in the utilization of hydrogen peroxide. In this case, salt ions again form a single primary cluster, which combines with other clusters at the maximum Euclidean distance in the experiment.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11129
Author(s):  
Priscila Conde-Guerrero ◽  
Lia C. Méndez-Rodríguez ◽  
Juan A. de Anda-Montañez ◽  
Tania Zenteno-Savín

Background Totoaba, Totoaba macdonaldi, is an endemic species of the Gulf of California, where wide variations in sea temperature throughout the year, surface salinities that gradually increase towards the north, and contamination by discharge of wastewater have been recorded. In addition to the challenges of reproduction and swimming, its characteristic biannual migration presents totoaba with changes in environmental factors that could affect oxidative stress indicators. The objective of this study was to assess spatial and seasonal changes in the oxidative stress indicators in muscle samples of totoaba. Methods Reactive oxygen species production, antioxidant enzyme activities and lipid peroxidation levels were quantified by spectrophotometry. Results Results suggest spatial-temporal variations of the oxidative stress indicators in muscle of totoaba that may be associated to a complex interaction between environmental and biological factors, including reproduction and nutrient availability. These results contribute to explain the appeal of totoaba as a marketable meat and suggest totoaba may provide antioxidant nutrients to consumers.


Author(s):  
Alireza Mortazavi ◽  
Hossein Mohammad Pour Kargar ◽  
Farimah Beheshti ◽  
Akbar Anaeigoudari ◽  
Gholamhasan Vaezi ◽  
...  

Abstract. The effect of carvacrol (CAR) on oxidative stress, inflammation, and liver dysfunction induced by lipopolysaccharide (LPS) was explored. The rats (n=40) were daily injected (2 weeks) by saline as control, LPS (1 mg/kg, i.p.), and 25, 50 or 100 mg/kg CAR (i.p.) before LPS. LPS increased aspartate transaminase (AST: 162±13 U/L), alanine aminotransferase (ALT: 74.6±2.15 U/L), alkaline phosphatase (ALK-P: 811±51 U/L), interlukine-1β (IL-1β: 1254±51 pg/g tissue), malondialdehyde (MDA: 32±1.09 nM/g tissue), and nitric oxide (NO: 224±13.5 nM/g tissue) (P<0.01–P<0.001) while, decreased total protein(4.08±0.38 g/dl), albumin(2.79±0.16 g/dl), thiol (5.16±0.19 μM/g tissue), superoxide dismutase (SOD: 10.57±0.13 U/g tissue), and catalase (CAT: 0.78±0.02 U/g tissue) compared to control (P<0.001). CAR reversed the effects of LPS (P<0.05–P<0.001). In the rats treated by 100 mg/kg CAR, the indicators were as follows: AST: 118±10.1 U/L, ALT: 42.5±4.13 U/L, ALK-P: 597±39.91 U/L, IL-1β: 494±15 pg/g tissue, and NO: 141±5.35 nM/g tissue. Both 50 and 100 mg/kg CAR corrected oxidative stress indicators and in the group treated by 100 mg/kg CAR, they were: MDA: 23.4±0.91 nM/g tissue, thiol: 7.98±0.18 μM/g tissue, SOD: 21±0.8 U/g tissue, and CAT: 1.12±0.02 U/g tissue(P<0.05–P<0.001). In conclusion, CAR improved liver function, accompanied with antioxidant and antiinflammatory effects.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1480
Author(s):  
DongGwan Kim ◽  
Ramin Bahmani ◽  
Mahsa Modareszadeh ◽  
Seongbin Hwang

Arsenite [As(III)] is a highly toxic chemical to all organisms. Previously, we reported that the overexpression of NtCyc07 enhanced As(III) tolerance and reduced As(III) accumulation in yeast (Saccharomyces cerevisiae) and tobacco (Nicotiana tabacum). To understand a mechanism for higher As(III) tolerance and lower As(III) accumulation in NtCyc07-overexpressing tobacco, we examined the expression levels of various putative As(III) transporters (aquaporin). The expressions of putative As(III) exporter NIP1;1, PIP1;1, 1;5, 2;1, 2;2, and 2;7 were enhanced, while the expressions of putative As(III) importer NIP3;1, 4;1, and XIP2;1 were decreased, contributing to the reduced accumulation of As(III) in NtCyc07-overexpressing tobacco. In addition, the levels of oxidative stress indicators (H2O2, superoxide and malondialdehyde) were lower, and the activities of antioxidant enzymes (catalase, superoxide dismutase and glutathione reductase) were higher in NtCyc07-tobacco than in the control tobacco. This suggests that the lower oxidative stress in transgenic tobacco may be attributed to the higher activities of antioxidant enzymes and lower As(III) levels. Taken together, the overexpression of NtCyc07 enhances As(III) tolerance by reducing As(III) accumulation through modulation of expressions of putative As(III) transporters in tobacco.


2012 ◽  
Vol 63 (10) ◽  
pp. 3631-3642 ◽  
Author(s):  
G. Roqueiro ◽  
S. Maldonado ◽  
M. d. C. Rios ◽  
H. Maroder

2013 ◽  
Vol 64 (4) ◽  
pp. 553-559 ◽  
Author(s):  
Seyed Fazel Nabavi ◽  
Solomon Habtemariam ◽  
Antoni Sureda ◽  
Akbar Hajizadeh Moghaddam ◽  
Maria Daglia ◽  
...  

Abstract Gallic acid has been identified as an antioxidant component of the edible and medicinal plant Peltiphyllum peltatum. The present study examined its potential protective role against sodium fluoride (NaF)-induced oxidative stress in rat erythrocytes. Oxidative stress was induced by NaF administration through drinking water (1030.675 mg m-3 for one week). Gallic acid at 10 mg kg-1 and 20 mg kg-1 and vitamin C for positive controls (10 mg kg-1) were administered daily intraperitoneally for one week prior to NaF administration. Thiobarbituric acid reactive substances, antioxidant enzyme activities (superoxide dismutase and catalase), and the level of reduced glutathione were evaluated in rat erythrocytes. Lipid peroxidation in NaF-exposed rats significantly increased (by 88.8 %) when compared to the control group (p<0.05). Pre-treatment with gallic acid suppressed lipid peroxidation in erythrocytes in a dose-dependent manner. Catalase and superoxide dismutase enzyme activities and glutathione levels were reduced by NaF intoxication by 54.4 %, 63.69 %, and 42 % (p<0.001; vs. untreated control group), respectively. Pre-treatment with gallic acid or vitamin C significantly attenuated the deleterious effects. Gallic acid isolated from Peltiphyllum peltatum and vitamin C mitigated the NaF-induced oxidative stress in rat erythrocytes.


2003 ◽  
Vol 22 (6) ◽  
pp. 423-427 ◽  
Author(s):  
Mary Otsyula ◽  
Matthew S. King ◽  
Tonya G. Ketcham ◽  
Ruth A. Sanders ◽  
John B. Watkins

Two of the models used in current diabetes research include the hypergalactosemic rat and the hyperglucosemic, streptozotocin-induced diabetic rat. Few studies, however, have examined the concurrence of these two models regarding the effects of elevated hexoses on biomarkers of oxidative stress. This study compared the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase and the concentrations of glutathione, glutathione disulfide, and thiobarbituric acid reactants (as a measure of lipid peroxidation) in liver, kidney, and heart of Sprague-Dawley rats after 60 days of either a 50% galactose diet or insulin deficiency caused by streptozotocin injection. Most rats from both models developed bilateral cataracts. Blood glucose and glycosy-lated hemoglobin A1c concentrations were elevated in streptozotocin diabetic rats. Streptozotocin diabetic rats exhibited elevated activities of renal superoxide dismutase, cardiac catalase, and renal and cardiac glutathione peroxidase, as well as elevated hepatic lipid peroxidation. Insulin treatment of streptozotocin-induced diabetic rats normalized altered markers. In galactosemic rats, hepatic lipid peroxidation was increased whereas glutathione reductase activity was diminished. Glutathione levels in liver were decreased in diabetic rats but elevated in the galactosemic rats, whereas hepatic glutathione disulfide concentrations were decreased much more in diabetes than in galactosemia. Insulin treatment reversed/prevented all changes caused by streptozotocin-induced diabetes. Lack of concomitance in these data indicate that the 60-day galactose-fed rat is not experiencing the same oxidative stress as the streptozotocin diabetic rat, and that investigators must be cautious drawing conclusions regarding the concurrence of the effects of the two animal models on oxidative stress biomarkers.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Tien-Huang Chen ◽  
Yi-Hsuan Chiang ◽  
Jiun-Nan Hou ◽  
Chih-Chieh Cheng ◽  
Eny Sofiyatun ◽  
...  

Dengue viruses (DENVs) cause dengue fever which is an important mosquito-borne disease in tropical areas. Generally, DENV does not cause cellular damage in mosquito cells. However, alterations in cytosolic calcium ions ([Ca2+]cyt) and the mitochondrial membrane potential (MMP), as well as accumulated reactive oxygen species (ROS), including superoxide anions (O2∙-) and hydrogen peroxide (H2O2), can be detected in C6/36 cells with DENV2 infection. Evident upregulation of BiP/GRP78 also appeared at 24 h postinfection in DENV2-infected C6/36 cells. As expression of BiP/GRP78 mRNA was reduced when the transcription factor X-box-binding protein-1 (XBP1) was knocked down in C6/36 cells, it demonstrated that BiP/GRP78 is the target gene regulated by the XBP1 signal pathway. We further demonstrated that the expression and splicing activity of XBP1 were upregulated in parallel with DENV2 infection in C6/36 cells. In C6/36 cells with BiP/GRP78 overexpression, oxidative stress indicators including [Ca2+]cyt, MMP,O2∙-, and H2O2were all pushed back to normal. Taken together, DENV2 activates XBP1 at earlier stage of infection, followed by upregulating BiP/GRP78 in mosquito cells. This regulatory pathway contributes a cascade in relation to oxidative stress alleviation. The finding provides insights into elucidating how mosquitoes can healthily serve as a vector of arboviruses in nature.


Sign in / Sign up

Export Citation Format

Share Document