Structural-bioinformatics analysis of SARS-CoV-2 variants reveals higher hACE2 receptor binding affinity for Omicron B.1.1.529 spike RBD compared to wild-type reference.

Author(s):  
Vedat Durmaz ◽  
Katharina Köchl ◽  
Amit Singh ◽  
Michael Hetmann ◽  
Lena Parigger ◽  
...  

Abstract To date, more than 263 million people have been infected with SARS-CoV-2 during the COVID-19 pandemic. In many countries, the global spread came in several pandemic waves characterized by the emergence of new SARS-CoV-2 variants. Here, we report on a sequence- and structural-bioinformatics analysis by which we estimate the impact of amino acid exchanges on the affinity of the SARS-CoV-2 spike receptor-binding domain (RBD) to the human receptor hACE2. This is carried out by qualitative electrostatics and hydrophobicity analysis as well as through molecular dynamics simulations used for the development of a highly accurate linear interaction energy (LIE) binding affinity model that was calibrated on a large set of experimental binding energies. For the newest variant of concern (VOC), B.1.1.529 Omicron, our Halo difference point cloud studies reveal the largest impact on the RBD binding interface compared to any other VOC. Moreover, according to our LIE model, Omicron achieved a substantially higher ACE2 binding affinity than the wild-type and in particular the highest among all VOCs except for Alpha and therefore requires special attention and monitoring. Using this prediction model we provide early structural insight and binding properties before experimentally determined complex structures and binding affinity data become available in the upcoming months.

2021 ◽  
Author(s):  
Prashant Ranjan ◽  
Neha   ◽  
Chandra Devi ◽  
Parimal Das

Prevailing COVID-19 vaccines are based on the spike protein of earlier SARS-CoV-2 strain that emerged in Wuhan, China. Continuously evolving nature of SARS-CoV-2 resulting emergence of new variant/s raise the risk of immune absconds. Several RBD (receptor-binding domain) variants have been reported to affect the vaccine efficacy considerably. In the present study, we performed in silico structural analysis of spike protein of double mutant (L452R & E484Q), a new variant of SARS-CoV-2 recently reported in India along with K417G variants and earlier reported RBD variants and found structural changes in RBD region after comparing with the wild type. Comparison of the binding affinity of the double mutant and earlier reported RBD variant for ACE2 (angiotensin 2 altered enzymes) receptor and CR3022 antibody with the wild-type strain revealed the lowest binding affinity of the double mutant for CR3022 among all other variants. These findings suggest that the newly emerged double mutant could significantly reduce the impact of the current vaccine which threatens the protective efficacy of current vaccine therapy.


2021 ◽  
Author(s):  
Eileen Socher ◽  
Marcus Conrad ◽  
Lukas Heger ◽  
Friedrich Paulsen ◽  
Heinrich Sticht ◽  
...  

AbstractThe B.1.1.7 variant of the SARS-CoV-2 virus shows enhanced infectiousness over the wild type virus, leading to increasing patient numbers in affected areas. A number of single amino acid exchanges and deletions within the trimeric viral spike protein characterize this new SARS-CoV-2 variant. Crucial for viral entry into the host cell is the interaction of the spike protein with the cell surface receptor angiotensin-converting enzyme 2 (ACE2) as well as integration of the viral fusion peptide into the host membrane. Respective amino acid exchanges within the SARS-CoV-2 variant B.1.1.7 affect inter-monomeric contact sites within the spike protein (A570D and D614G) as well as the ACE2-receptor interface region (N501Y), which comprises the receptor-binding domain (RBD) of the viral spike protein. However, the molecular consequences of mutations within B.1.1.7 on spike protein dynamics and stability, the fusion peptide, and ACE2 binding are largely unknown. Here, molecular dynamics simulations comparing SARS-CoV-2 wild type with the B.1.1.7 variant revealed inter-trimeric contact rearrangements, altering the structural flexibility within the spike protein trimer. In addition to reduced flexibility in the N-terminal domain of the spike protein, we found increased flexibility in direct spatial proximity of the fusion peptide. This increase in flexibility is due to salt bridge rearrangements induced by the D614G mutation in B.1.1.7 found in pre- and post-cleavage state at the S2’ site. Our results also imply a reduced binding affinity for B.1.1.7 with ACE2, as the N501Y mutation restructures the RBD-ACE2 interface, significantly decreasing the linear interaction energy between the RBD and ACE2.Our results demonstrate how mutations found within B.1.1.7 enlarge the flexibility around the fusion peptide and change the RBD-ACE2 interface, which, in combination, might explain the higher infectivity of B.1.1.7. We anticipate our findings to be starting points for in depth biochemical and cell biological analyses of B.1.1.7, but also other highly contagious SARS-CoV-2 variants, as many of them likewise exhibit a combination of the D614G and N501Y mutation.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 525
Author(s):  
Eileen Socher ◽  
Marcus Conrad ◽  
Lukas Heger ◽  
Friedrich Paulsen ◽  
Heinrich Sticht ◽  
...  

The B.1.1.7 variant of the SARS-CoV-2 virus shows enhanced infectiousness over the wild type virus, leading to increasing patient numbers in affected areas. Amino acid exchanges within the SARS-CoV-2 spike protein variant of B.1.1.7 affect inter-monomeric contact sites within the trimer (A570D and D614G) as well as the ACE2-receptor interface region (N501Y), which comprises the receptor-binding domain (RBD) of the spike protein. However, the molecular consequences of mutations within B.1.1.7 on spike protein dynamics and stability or ACE2 binding are largely unknown. Here, molecular dynamics simulations comparing SARS-CoV-2 wild type with the B.1.1.7 variant revealed inter-trimeric contact rearrangements, altering the structural flexibility within the spike protein trimer. Furthermore, we found increased flexibility in direct spatial proximity of the fusion peptide due to salt bridge rearrangements induced by the D614G mutation in B.1.1.7. This study also implies a reduced binding affinity for B.1.1.7 with ACE2, as the N501Y mutation restructures the RBD–ACE2 interface, significantly decreasing the linear interaction energy between the RBD and ACE2. Our results demonstrate how mutations found within B.1.1.7 enlarge the flexibility around the fusion peptide and change the RBD–ACE2 interface. We anticipate our findings to be starting points for in depth biochemical and cell biological analyses of B.1.1.7.


Author(s):  
Hari Balaji ◽  
Selvaraj Ayyamperuma ◽  
Niladri Saha ◽  
Shyam Sundar Pottabathula ◽  
Jubie Selvaraj ◽  
...  

: Vitamin-D deficiency is a global concern. Gene mutations in the vitamin D receptor’s (VDR) ligand binding domain (LBD) variously alter the ligand binding affinity, heterodimerization with retinoid X receptor (RXR) and inhibit coactivator interactions. These LBD mutations may result in partial or total hormone unresponsiveness. A plethora of evidence report that selective long chain polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (AA) bind to the ligand-binding domain of VDR and lead to transcriptional activation. We therefore hypothesize that selective PUFAs would modulate the dynamics and kinetics of VDRs, irrespective bioactive of vitamin-D binding. The spatial arrangements of the selected PUFAs in VDR active site were examined by in-silico docking studies. The docking results revealed that PUFAs have fatty acid structure-specific binding affinity towards VDR. The calculated EPA, DHA & AA binding energies (Cdocker energy) were lesser compared to vitamin-D in wild type of VDR (PDB id: 2ZLC). Of note, the DHA has higher binding interactions to the mutated VDR (PDB id: 3VT7) when compared to the standard Vitamin-D. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding of DHA with mutated VDR complex. These findings suggest the unique roles of PUFAs in VDR activation and may offer alternate strategy to circumvent vitamin-D deficiency.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 177-196
Author(s):  
Lobna Al-Zaidan ◽  
Sarra Mestiri ◽  
Afsheen Raza ◽  
Maysaloun Merhi ◽  
Varghese Philipose Inchakalody ◽  
...  

Pneumonia cases of unknown etiology in Wuhan, Hubei province, China were reported to the World Health Organization on 31st of December 2019. Later the pathogen was reported to be a novel coronavirus designated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes Corona virus disease 2019 (COVID-19). The disease outspread was followed by WHO declaration of COVID-19 pandemic as a “Public Health Emergency of International Concern”. SARS-CoV-2 is a novel pathogenic beta coronavirus that infects humans causing severe respiratory illness. However, multifarious factors can contribute to the susceptibility to COVID-19 related morbidity and mortality such as age, gender, and underlying comorbidities. Infection initiates when viral particles bind to the host cell surface receptors where SARS-CoV-2 spike glycoprotein subunit 1 binds to the Angiotensin Converting Enzyme 2 (ACE2). It is of importance to mention that SARS-CoV and SARS-CoV-2 viruses’ mediate entry into the host cells via ACE2 receptor which might be correlated with the structural similarity of spike glycoprotein subunit 1 of both SARS viruses. However, the structural binding differs, whereas ACE2 receptor binding affinity with SARS-CoV-2 is 4 folds higher than that with SARS-CoV. Moreover, amino acids sequence divergence between the two S glycoproteins might be responsible for differential modulations of the specific immune response to both viruses. Identification of different aspects such as binding affinity, differential antigenic profiles of S-glycoproteins, and ACE2 mutations might influence the investigation of potential therapeutic strategies targeting SARS-CoV-2/ACE2 binding interface. In this review, we aim to elaborate on the expression of hACE2 receptor protein and its binding with SARS-CoV-2 S1 subunit, the possible immunogenic sequences of spike protein, effect of ACE 2 polymorphism on viral binding, and infectivity/susceptibility to disease. Furthermore, targeting of hACE2 receptor binding with SARS-CoV-2 S1 subunit via various mechanisms will be discussed to understand its role in therapeutics.


Author(s):  
Nash D. Rochman ◽  
Guilhem Faure ◽  
Yuri I. Wolf ◽  
Peter L. Freddolino ◽  
Feng Zhang ◽  
...  

AbstractAt the time of this writing, August 2021, potential emergence of vaccine escape variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a grave global concern. The interface between the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein and the host receptor (ACE2) overlap with the binding site of principal neutralizing antibodies (NAb), limiting the repertoire of viable mutations. Nonetheless, variants with multiple mutations in the RBD have rose to dominance. Non-additive, epistatic relationships among RBD mutations are apparent, and assessing the impact of such epistasis on the mutational landscape is crucial. Epistasis can substantially increase the risk of vaccine escape and cannot be completely characterized through the study of the wild type (WT) alone. We employed protein structure modeling using Rosetta to compare the effects of all single mutants at the RBD-NAb and RBD-ACE2 interfaces for the WT, Gamma (417T, 484K, 501Y), and Delta variants (452R, 478K). Overall, epistasis at the RBD surface appears to be limited and the effects of most multiple mutations are additive. Epistasis at the Delta variant interface weakly stabilizes NAb interaction relative to ACE2, whereas in the Gamma variant, epistasis more substantially destabilizes NAb interaction. These results suggest that the repertoire of potential escape mutations for the Delta variant is not substantially different from that of the WT, whereas Gamma poses a moderately greater risk for enhanced vaccine escape. Thus, the modest ensemble of mutations relative to the WT shown to reduce vaccine efficacy might constitute the majority of all possible escape mutations.SignificancePotential emergence of vaccine escape variants of SARS-CoV-2 is arguably the most pressing problem during the COVID-19 pandemic as vaccines are distributed worldwide. We employed a computational approach to assess the risk of antibody escape resulting from mutations in the receptor-binding domain of the spike protein of the wild type SARS-CoV-2 virus as well as the Gamma and Delta variants. The results indicate that emergence of escape mutants is somewhat less likely for the Delta variant than for the wild type and moderately more likely for the Gamma variant. We conclude that the small set of escape-enhancing mutations already identified for the wild type is likely to include the majority of all possible mutations with this effect, a welcome finding.


2021 ◽  
Author(s):  
Wei Bu Wang ◽  
Yu Liang ◽  
Yu Qin Jin ◽  
Jing Zhang ◽  
Ji Guo Su ◽  
...  

AbstractThe pandemic of the COVID-19 disease caused by SARS-CoV-2 has led to more than 100 million infections and over 2 million deaths worldwide. The progress in the developments of effective vaccines and neutralizing antibody therapeutics brings hopes to eliminate the threat of COVID-19. However, SARS-CoV-2 continues to mutate, and several new variants have been emerged. Among the various naturally-occurring mutations, the E484K mutation shared by both the 501Y.V2 and 501Y.V3 variants attracted serious concerns, which may potentially enhance the receptor binding affinity and reduce the immune response. In the present study, the molecular mechanism behind the impacts of E484K mutation on the binding affinity of the receptor-binding domain (RBD) with the receptor human angiotensin-converting enzyme 2 (hACE2) was investigated by using the molecular dynamics (MD) simulations combined with the molecular mechanics-generalized Born surface area (MMGBSA) method. Our results indicate that the E484K mutation results in more favorable electrostatic interactions compensating the burial of the charged and polar groups upon the binding of RBD with hACE2, which significantly improves the RBD-hACE2 binding affinity. Besides that, the E484K mutation also causes the conformational rearrangements of the loop region containing the mutant residue, which leads to more tight binding interface of RBD with hACE2 and formation of some new hydrogen bonds. The more tight binding interface and the new hydrogen bonds formation also contribute to the improved binding affinity of RBD to the receptor hACE2. In addition, six neutralizing antibodies and nanobodies complexed with RBD were selected to explore the effects of E484K mutation on the recognition of these antibodies to RBD. The simulation results show that the E484K mutation significantly reduces the binding affinities to RBD for most of the studied neutralizing antibodies, and the decrease in the binding affinities is mainly owing to the unfavorable electrostatic interactions caused by the mutation. Our studies revealed that the E484K mutation may improve the binding affinity between RBD and the receptor hACE2, implying more transmissibility of the E484K-containing variants, and weaken the binding affinities between RBD and the studied neutralizing antibodies, indicating reduced effectiveness of these antibodies. Our results provide valuable information for the effective vaccine development and antibody drugs design.


1993 ◽  
Vol 121 (3) ◽  
pp. 705-713 ◽  
Author(s):  
P Bellosta ◽  
D Talarico ◽  
D Rogers ◽  
C Basilico

The K-FGF/HST (FGF-4) growth factor is a member of the FGF family which is efficiently secreted and contains a single N-linked glycosylation signal. To study the role of glycosylation in the secretion of K-FGF, we mutated the human K-fgf cDNA to eliminate the glycosylation signal and the mutated cDNA was cloned into a mammalian expression vector. Studies of immunoprecipitation from the conditioned medium of cells expressing this plasmid revealed that the lack of glycosylation did not impair secretion, however the unglycosylated protein was immediately cleaved into two NH2-terminally truncated peptides of 13 and 15 kD, which appeared to be more biologically active than the wild-type protein. These two proteins also showed higher heparin binding affinity than that of wt K-FGF. We have expressed in bacteria the larger of these two proteins (K140), in which the NH2-terminal 36 amino acids present in the mature form of K-FGF have been deleted. Mitogenicity assays on several cell lines showed that purified recombinant K140 had approximately five times higher biological activity than wild-type recombinant K-FGF. Studies of receptor binding showed that K140 had higher affinity than wt K-FGF for two of the four members of FGF receptor's family, specifically for FGFR-1 (flg) and FGFR-2 (bek). K140 also had increased heparin binding ability, but this property does not appear to be responsible for the increased affinity for FGF receptors. Thus removal of the NH2-terminal 36 amino acids from the mature K-FGF produces growth factor molecules with an altered conformation, resulting in higher heparin affinity, and more efficient binding to FGF receptors. Although it is not clear whether cleavage of K-FGF to generate K140 occurs in vivo, this could represent a novel mechanism of modulation of growth factor activity.


2020 ◽  
Author(s):  
Xiaoqiang Huang ◽  
Chengxin Zhang ◽  
Robin Pearce ◽  
Gilbert S. Omenn ◽  
Yang Zhang

ABSTRACTDespite considerable research progress on SARS-CoV-2, the direct zoonotic origin (intermediate host) of the virus remains ambiguous. The most definitive approach to identify the intermediate host would be the detection of SARS-CoV-2-like coronaviruses in wild animals. However, due to the high number of animal species, it is not feasible to screen all the species in the laboratory. Given that the recognition of the binding ACE2 proteins is the first step for the coronaviruses to invade host cells, we proposed a computational pipeline to identify potential intermediate hosts of SARS-CoV-2 by modeling the binding affinity between the Spike receptor-binding domain (RBD) and host ACE2. Using this pipeline, we systematically examined 285 ACE2 variants from mammals, birds, fish, reptiles, and amphibians, and found that the binding energies calculated on the modeled Spike-RBD/ACE2 complex structures correlate closely with the effectiveness of animal infections as determined by multiple experimental datasets. Built on the optimized binding affinity cutoff, we suggested a set of 96 mammals, including 48 experimentally investigated ones, which are permissive to SARS-CoV-2, with candidates from primates, rodents, and carnivores at the highest risk of infection. Overall, this work not only suggested a limited range of potential intermediate SARS-CoV-2 hosts for further experimental investigation; but more importantly, it proposed a new structure-based approach to general zoonotic origin and susceptibility analyses that are critical for human infectious disease control and wildlife protection.


2021 ◽  
Author(s):  
Mehr Ali Mahmood Janlou ◽  
Hassan sahebjamee ◽  
Shademan Shokravi

Abstract The emergence of some mutations in the SARS-CoV-2 receptor binding domain (RBD) can increase the spread and pathogenicity due to the conformational changes and increase the stability of Spike protein. Due to the formation of different strains of SARS-CoV-2 by mutations, and their catastrophic effect on public health, the study of the effect of mutations by scientists and researchers around the world is inevitable. According to available evidence, the S494P variant is observed in several SARS-CoV-2 strains from Michigan, USA. To investigate how the S494P natural mutation alters receptor binding affinity in RBD, we performed structural analysis of wild-type and mutant spike proteins using some bioinformatics and computational tools. The results show that S494P mutation increases the spike protein stability. Also, applying docking by HADDOCK displayed higher binding affinity to hACE2 for mutant spike than wild type possibly due to the increased β-strand and Turn secondary structures which increases surface accessibly surface area (SASA) and chance of interaction. The analysis of S494P as a critical RBD mutation may provide the continuing surveillance of spike mutations to aid in the development of COVID-19 drugs and vaccines.


Sign in / Sign up

Export Citation Format

Share Document