scholarly journals TIGAR Enhanced Free Ca2+ Concentration in Hepatocellular Carcinoma Cells to Accelerate the Sustained Proliferation and Drug Resistance

Author(s):  
Jia-ming Xie ◽  
Yi-qun Sui ◽  
Xin-yu Feng ◽  
Zhen-yu Feng ◽  
Wei Li ◽  
...  

Abstract Background: To study the role of TP53-induced glycolysis and apoptosis regulator (TIGAR) in hepatocellular carcinoma (HCC) and drug resistance.Methods: HCC cells (HepG2 and SMMC7721) were used in this study. Fura 2-AM was used to assess cytosolic free Ca2+ concentrations ([Ca2+]i) within the two HCC cell lines. Nimodipine (NMDP), a Ca2+ antagonist, was used to reduce cytosolic [Ca2+]i level. Proliferation of HCC was measured using cell counting kit-8 (CCK-8). The roles of TIGAR and Ca2+ in drug resistance of HCC cells were assessed using epirubicin (Epi), 5-fluorouracil (5-FU), or cisplatinum (DDP).Results: Knockdown of TIGAR significantly suppressed cell viability, reduced [Ca2+]i, restrained protein expression of Ca2+-activated cysteine proteinases (Calpain1 and 2), as well as blocked the activation of nuclear factor kappa B (NF-κB) through an increase of cytoplasmic NF-κB and reduction of nuclear NF-κB. However, overexpression of TIGAR (oeTIGAR) resulted in the opposite. Evidence also shows that oeTIGAR suppressed the sensitivity of HCC to Epi, which was retarded by NMDP as an additional treatment. TIGAR interference could enhance the sensitivity of HCCs with high TIGAR expression to drugs.Conclusions: TIGAR promoted HCC progression and induced drug resistance, and the mechanism involved was [Ca2+]i-mediated activation of Calpain 1 and 2 and NF-κB signaling.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shanshan Wang ◽  
Rilu Feng ◽  
Ying Shi ◽  
Dexi Chen ◽  
Honglei Weng ◽  
...  

AbstractRetinoic acid and retinoid acid receptor (RA-RAR) signaling exhibits suppressive functions in the progression of hepatocellular carcinoma (HCC) through multiple mechanisms. However, whether RA-RAR signaling induces autophagy that contributes its anti-tumor activity in HCC remains elusive. In the current study, the effects of RA-RAR pathway on autophagy were investigated in two HCC cell lines: alpha-fetoprotein (AFP) positive PLC/PRF/5 and AFP negative HLE cells. Cell autophagy was analyzed with western blot for detection of LC3 conversion and p62/SQSTM1 degradation while autophagy flux was assayed using the mRFP-GFP-LC3 reporter. Cell apoptosis and viability were analyzed by caspase-3 activity, TdT-mediated dUTP nick end labeling (TUNEL) assay, and Cell Counting Kit (CCK)-8, respectively. Chromatin immunoprecipitation (ChIP) was employed to detect the binding of RAR onto the promoter of autophagy-relevant 7 (ATG7), and co-immunoprecipitation (CoIP) was used to analyze the interaction of AFP and RAR. The results showed that ATRA dosage and time-dependently induced high levels of cell autophagy in both the PLC/PRF/5 and HLE cells, which was accompanied with up-regulation of ATG7. ChIP assay showed that RAR was able to bind to its responsive elements on ATG7 promoter. Impairment of ATG7 induction or blockade of autophagy with chloroquine aggravated ATRA induced apoptosis of HCC cells. Furthermore, intracellular AFP was able to complex with RAR in PLC/PRF/5 cells. Knockdown of AFP in PLC/PRF/5 cells augmented the up-regulation of ATG7 by ATRA while overexpression of AFP in HLE cells attenuated ATRA induced ATG7 expression and autophagy. Thus, ATRA induced ATG7 and autophagy participated in its cytotoxicity on HCC cells and AFP interfere with the induction of ATG7 and autophagy through forming complex with RAR.


2020 ◽  
Vol 40 (10) ◽  
Author(s):  
Xiaohui Duan ◽  
Wei Li ◽  
Peng Hu ◽  
Bo Jiang ◽  
Jianhui Yang ◽  
...  

Abstract Hepatocellular carcinoma (HCC) remains one of the most common malignant tumors worldwide. The present study aimed to investigate the biological role of microRNA-183-5p (miR-183-5p), a novel tumor-related microRNA (miRNA), in HCC and illuminate the possible molecular mechanisms. The expression patterns of miR-183-5p in clinical samples were characterized using qPCR analysis. Kaplan–Meier survival curve was applied to evaluate the correlation between miR-183-5p expression and overall survival of HCC patients. Effects of miR-183-5p knockdown on HCC cell proliferation, apoptosis, migration and invasion capabilities were determined via Cell Counting Kit-8 (CCK8) assays, flow cytometry, scratch wound healing assays and Transwell invasion assays, respectively. Mouse neoplasm transplantation models were established to assess the effects of miR-183-5p knockdown on tumor growth in vivo. Bioinformatics analysis, dual-luciferase reporter assays and rescue assays were performed for mechanistic researches. Results showed that miR-183-5p was highly expressed in tumorous tissues compared with adjacent normal tissues. Elevated miR-183-5p expression correlated with shorter overall survival of HCC patients. Moreover, miR-183-5p knockdown significantly suppressed proliferation, survival, migration and invasion of HCC cells compared with negative control treatment. Consistently, miR-183-5p knockdown restrained tumor growth in vivo. Furthermore, programmed cell death factor 4 (PDCD4) was identified as a direct target of miR-183-5p. Additionally, PDCD4 down-regulation was observed to abrogate the inhibitory effects of miR-183-5p knockdown on malignant phenotypes of HCC cells. Collectively, our data suggest that miR-183-5p may exert an oncogenic role in HCC through directly targeting PDCD4. The current study may offer some new insights into understanding the role of miR-183-5p in HCC.


2020 ◽  
Author(s):  
Dan Wang ◽  
Jingbo Yang

Abstract Objective To probe into the regulatory mechanism of miR-375 in hepatocellular carcinoma (HCC) cells under sorafenib treatment. Methods Western blotting and qRT-PCR were applied to measure the expressions of miR-375 and SIRT5 in parental HCC cells (HepG2 and Huh7) and sorafenib-resistant HCC cells (HepG2/so and Huh7/so). HepG2/so cells were accordingly transfected with miR-375 mimic, miR-375 inhibitor, sh-SIRT5, pcDNA3.1-SIRT5 or negative control. Western blotting measured the expressions of p62, LC3I and LC3II in HCC cells. CCK-8 and flow cytometry assessed the survivability and apoptosis of HCC cells, respectively. Bioinformatics techniques and dual-luciferase reporter assay predicted and verified the targeting relationship between miR-375 and SIRT5. Results MiR-375 was under-expressed and SIRT5 was over-expressed in HCC cells. Autophagy inhibitor impaired the survival of HepG2/so cells transfected with miR-375 inhibitor. Autophagy activator enhanced the drug resistance of HepG2/so cells transfected with miR-375 mimic. MiR-375 suppressed the drug resistance of HepG2/so cells by inhibiting autophagy. SIRT5 enhanced the drug resistance of HepG2/so cells by promoting autophagy and it could be targeted by miR-375. Conclusion MiR-375 suppresses autophagy to attenuate the drug resistance of HCC cells by regulating SIRT5. The findings of this study may provide new therapeutic targets for treating hepatocellular carcinoma.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 655 ◽  
Author(s):  
Yuan-Yuan Chen ◽  
Wei-Hua Wang ◽  
Lin Che ◽  
You Lan ◽  
Li-Yin Zhang ◽  
...  

Hepatitis B virus (HBV) is one of predisposing factors for hepatocellular carcinoma (HCC). The role of HBV x protein (HBx) in mediating the induction and maintenance of cancer stemness during HBV-related HCC attracts considerable attention, but the exact mechanism has not been clearly elucidated. Here, ABCG2-dependent stem-like side population (SP) cells, which are thought to be liver cancer stem cells (LCSCs), were present in HCC cells, and the fraction of this subset was increased in HBx-expressing HCC cells. In addition, glycolysis was upregulated in LCSCs and HBx-expressing HCC cells, and intervention of glycolysis attenuated cancer stem-like phenotypes. Mitochondria play an important role in the maintenance of energy homeostasis, BNIP3L-dependent mitophagy was also activated in LCSCs and HBx-expressing HCC cells, which triggered a metabolic shift toward glycolysis. In summary, we proposed a positive feedback loop, in which HBx induced BNIP3L-dependent mitophagy which upregulated glycolytic metabolism, increasing cancer stemness of HCC cells in vivo and in vitro. BNIP3L might be a potential therapeutic target for intervention of LCSCs-associated HCC. Anti-HBx, a monoclonal antibody targeting intracellular HBx, had the potential to delay the progression of HBV infection related-HCC.


2021 ◽  
Author(s):  
Ting Yu ◽  
Jiajian Yu ◽  
Lu Lu ◽  
Yize Zhang ◽  
Yadong Zhou ◽  
...  

Abstract Purpose Lenvatinib is a long-awaited alternative to Sorafenib for first-line targeted therapy of patients with advanced hepatocellular carcinoma (HCC). However, resistance to Lenvatinib results in tumor progression and has become a major obstacle to improving the prognosis of HCC patients. Exploring the mechanisms underlying Lenvatinib resistance is considered essential for the treatment of advanced HCC. Methods Lenvatinib resistant HCC (LR-HCC) cells were generated and potential long non-coding RNAs (Lnc-RNAs) upregulated in LR-HCC cells were identified by RNA sequencing. The effects of upregulated Lnc-RNAs were evaluated in vitro in cell models and in vivo in experimental animals using quantitative cell viability and apoptosis assays. Results We found that Lnc-RNA MT1JP (MT1JP) was upregulated in LR-HCC cells and inhibited the apoptosis signaling pathway. In addition, we found that sponging of microRNA-24-3p by MT1JP released Bcl-2 like 2 (BCL2L2), an anti-apoptotic protein, thereby forming a positive-feedback loop. The role of this feedback loop was validated using rescue assays. Additionally, we found that upregulation of MT1JP and BCL2L2 impaired the sensitivity of HCC cells to Lenvatinib both vitro and vivo. Conclusions Our results suggest a novel molecular feedback loop between MT1JP and apoptosis signaling in Lenvatinib sensitive HCC cells.


2020 ◽  
Author(s):  
Shanshan Wang ◽  
Rilu Feng ◽  
Ying Shi ◽  
Dexi Chen ◽  
Honglei Weng ◽  
...  

Abstract Background: Retinoic acid and retinoid acid receptor (RA-RAR) signaling exhibits suppressive functions in the progression of hepatocellular carcinoma (HCC) through multiple mechanisms. However, whether RA-RAR signaling induces autophagy that contributes its anti-tumor activity in HCC remains elusive.Methods: The effects of RA-RAR pathway were investigated in two HCC cell lines: AFP positive PLC/PRF/5 cells and AFP negative HLE cells. Cell autophagy, apoptosis and proliferation were analyzed by Western blotting, co-immunoprecipitation (CoIP), Immunofluorescence staining, chromatin immunoprecipitation (ChIP), Caspase-3 activity and Cell Counting Kit (CCK)-8.Results: ATRA dosage-dependently induced high levels of cell autophagy through its specific nuclear receptor RAR in both the PLC/PRF/5 and HLE cells. ChIP assay showed that RAR bind to response elements of key autophagy-initiated gene autophagy-relevant protein (ATG) 7 gene in the 5’-flanking region. Analyses based on CoIP further revealed that AFP formed complex with RAR in PLC/PRF/5 cells. Knockdown of AFP reduced the AFP and RAR combination, and thus up-regulated the expression of ATG7 gene and cell autophagy. Interestingly, in the HLE cells, AFP overexpressed and combination with RAR resulted in down-regulated ATG7 gene expression and reduction of cell autophagy. In both cell lines, ATRA inhibited cell proliferation and induced cell apoptosis, which was impacted by AFP action.Conclusion: The current study indicated that autophagy participated in the functionality of ATRA on HCC cells and AFP is a key regulator of ATRA induced autophagy through forming complexes with RAR in HCC cells.


2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Shouzhang Yang ◽  
Huajie Cai ◽  
Bingren Hu ◽  
Jinfu Tu

Abstract In the present study, we investigated the role of lncRNA SAMMSON in hepatocellular carcinoma (HCC). We found that SAMMSON was up-regulated in HCC tissues, and patients with high levels of SAMMSON in HCC tissues had significantly lower overall rate within 5 years after admission. miR-9-3p was down-regulated in HCC tissues and inversely correlated with SAMMSON. SAMMSON expression was not significantly affected by HBV and HCV infections in HCC patients. In HCC cells, SAMMSON overexpression resulted in down-regulated miR-9-3p expression, while miR-9-3p overexpression caused no significant changes in expression levels of SAMMSON. SAMMSON overexpression led to increased, while miR-9-3p overexpression resulted in decreased migration and invasion rates of HCC cells. Therefore, SAMMSON negatively regulated miR-9-3p in HCC cells to promote cancer cell migration and invasion.


Sign in / Sign up

Export Citation Format

Share Document