scholarly journals Study On The Influence of Fiber Cutting Angle On Cutting Force In Ultrasonic Assisted Cutting CFRP Disc

Author(s):  
Xiaobo Wang ◽  
Chaosheng Song ◽  
Lulu Li ◽  
Feng Jiao

Abstract Carbon fiber reinforced plastics (CFRP) is a new type of composite material that is widely used in the aviation field, the influence mechanism of fiber cutting angle on cutting force is analyzed, a theoretical model of ultrasonic assisted cutting force for CFRP is established, ultrasonic assisted longitudinal-torsional cutting experiments of CFRP disc are carried out, and compared with normal cutting process. According to the experimental results, the radar map of the cutting force along the circumference of CFRP unidirectional laminates is established, which show that the cutting force can be reduced by ultrasonic assisted cutting compared with ordinary cutting. Under the three cutting modes, the fiber cutting angle has a great influence on the tangential force, and the radial force of the same fiber cutting angle is less than the tangential force, the maximum radial force appeared near the fiber cutting angle of 120°, while the minimum tangential force and the minimum radial force both appear near the parallel direction cutting at 0°. The research results can be used for reference in the processing of CFRP and other composite materials.

2019 ◽  
Vol 825 ◽  
pp. 123-128
Author(s):  
Kota Matsuda ◽  
Ryutaro Tanaka ◽  
Katsuhiko Sekiya ◽  
Keiji Yamada

In this study, the transition of cutting force in the tangential and radial direction during one cut was investigated in milling of AISI-1045, AISI-304, and Ti-6Al-4V with a TiN coated carbide throw-away insert. In the case of 1045 and Ti-6Al-4V, there was not obvious difference in tangential forces between up-cut and down-cut. However, up-cut showed larger radial force than down-cut in any material. In down-cut, tangential force showed almost the same regardless of radial depth of cut. 304 and Ti-6Al-4V caused larger radial force with the increase of radial depth of cut at the same cut chip thickness.


Author(s):  
N Fang ◽  
M Wang ◽  
C Nedeß

A kind of new-type indexable insert with a three-dimensionally shaped rake face, namely the helical rake face, is developed in this present work, contributing to the formation of short conical helical chips acceptable for modern automated and unattended machining systems. The geometric parameters of the helical rake face consist of the helical gradient, the helical length, the beginning rake angle at the tool nose and the end rake angle on the cutting edge. The influences of these parameters on the side-curling of the chip and on the chip breakability are investigated. Under the cutting conditions employed in this paper, the cutting force measuring results show that the cutting component of the resultant tool force and the radial force when using the tool insert with the helical rake face are less than those when using the type CNMG120408-ZF tool insert, a kind of commercially available insert widely used.


2020 ◽  
Vol 319 ◽  
pp. 04002
Author(s):  
K. X. Kang ◽  
B. He ◽  
S. J. Wang

This Effects of cutting angle of conical picks affecting on rock breaking capacity was researched to calculate the low construction efficiency of the conical picks at hard rock cutting. Firstly, according to the construction situation of the conical picks, the rotary milling test bench of rock was built. Secondly, the physical and mechanical properties of four kinds of rocks (blue sandstone, red sandstone, limestone, granite.) were measured, and the brittleness index of the four kinds of rocks was calculated. Finally, four kinds of rocks were tested at six cutting angles, respectively. The results of the experiments indicate that the radial force is the largest, the tangential fore is the second, and the lateral force is the smallest in the three-axis of the pick against the four rocks over 50MPa. With the increase of the rock compressive strength, the ratio of radial force to tangential force increases gradually. Therefore, more down-force of machine is needed to improve the impact penetration ability of the pick. Taking milling resistance and specific energy consumption as index, the cutting angle of 63 for the green sandstone and red sandstone, and the cutting angle of 58 for the limestone and granite are helpful to improve the operation efficiency of the whole machine.


2018 ◽  
Vol 179 ◽  
pp. 02002
Author(s):  
Liu Jianyong ◽  
Qiao Lihong ◽  
Chen Wuyi

In order to study the cutting force in machining of titanium alloy with solid carbide cutters of different geometriy, variable helix (VH), variable pitch (VP) and standard (SD) milling cutter were used to machine titanium alloy TB6 via dry milling. The influence of cutting parameters and geometric structure parameters of milling cutters on the cutting force was investigated by the analysis of radial and tangential forces in the cutting process with three kinds of milling cutters. The experiment results showed that cutting parameters had the same influence on the radial force and tangential force of the three milling cutters, and the influence of geometric structure parameters on radial force and tangential force was different. Compared with the SD milling cutter, the change of pitch and helix resulted in the increase of radial and tangential forces, the pitch change led to the radial force being larger than the tangential force, and the helix change led to the radial force being smaller than the tangential force.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Qiang Fang ◽  
Ze-Min Pan ◽  
Bing Han ◽  
Shao-Hua Fei ◽  
Guan-Hua Xu ◽  
...  

Drilling carbon fiber reinforced plastics and titanium (CFRP/Ti) stacks is one of the most important activities in aircraft assembly. It is favorable to use different drilling parameters for each layer due to their dissimilar machining properties. However, large aircraft parts with changing profiles lead to variation of thickness along the profiles, which makes it challenging to adapt the cutting parameters for different materials being drilled. This paper proposes a force sensorless method based on cutting force observer for monitoring the thrust force and identifying the drilling material during the drilling process. The cutting force observer, which is the combination of an adaptive disturbance observer and friction force model, is used to estimate the thrust force. An in-process algorithm is developed to monitor the variation of the thrust force for detecting the stack interface between the CFRP and titanium materials. Robotic orbital drilling experiments have been conducted on CFRP/Ti stacks. The estimate error of the cutting force observer was less than 13%, and the stack interface was detected in 0.25 s (or 0.05 mm) before or after the tool transited it. The results show that the proposed method can successfully detect the CFRP/Ti stack interface for the cutting parameters adaptation.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Zhenguo Lu ◽  
Lirong Wan ◽  
Qingliang Zeng ◽  
Xin Zhang ◽  
Kuidong Gao

In order to overcome conical pick wear in the traditional rock cutting method, a new cutting method was proposed on account of increasing free surface of the rock. The mechanical model of rock plate bending under concentrated force was established, and the first fracture position was given. The comparison between experimental and numerical results indicated that the numerical method is effective. A computer code LS-DYNA (3D) was employed to study the cutting performance of a conical pick. To study the rock size influenced on the cutting performance, the numerical simulations with different thickness, width, and height of a rock plate was carried out. The numerical simulation with the different cutting parameters of cutting speed, cutting angle, and cutting position influenced on cutting performance was also carried out. The numerical results indicated that the peak force increased with the increasing thickness of rock plate. With the increasing width and height of the rock plate, the peak force decreased and then became stable. Besides, the peak force decreased with the increasing of cutting position lxp/lx. Moreover, the peak force increased and then decreased with the increasing of cutting angle. The cutting speed has nonsignificant influence on the peak force. The strong exponential relationship was obtained between the peak force and cutting position, thickness, height, and width of the rock plate at a confidence level of 0.95. A binomial relationship was observed between the peak force and cutting angel. The cutting force comparison between traditional rock cutting and rock plate cutting indicated that the new cutting method can effectively reduce peak cutting force.


2015 ◽  
Vol 667 ◽  
pp. 231-236 ◽  
Author(s):  
Xiao Fan Yang ◽  
You Sheng Li ◽  
Guo Hong Yan ◽  
Ju Dong Liu ◽  
Dong Min Yu

Carbon fiber-reinforced plastics (CFRP) are typical difficult-to-machine materials, which is easy to produce many defects such as burrs, dilacerations, layering in milling process. And selecting the appropriate cutting tool has become the key to machining CFRP with high quality and efficiency. In the paper, the machining principle of milling CFRP with new type end mill was analyzed. The diamond coating of general right-hand end mill, cross-flute router and fine-cross-nick router were used to cutting CFRP under the same cutting condition. Through the comparative analysis of the workpiece’s surface quality and tool wear, it concluded that: compared with right-hand diamond coated end mill, cross-flute diamond coated router or fine-cross-nick diamond coated router could effectively suppress the appearance of burrs and dilacerations; abnormal coating peeling appeared in the flank face of right-hand diamond coated end mill, forming the boundary wear, which accelerated wear failure; the flank wear of diamond coated cross-flute router and fine-cross-nick router were both abrasive wear. Due to having more cutting edge than cross-flute router in cutting process, the flank wear of fine-cross-nick router was slower, and the tool life was longer. So it was more suitable for cutting CFRP.


1999 ◽  
Author(s):  
Armen L. Airikyan

Abstract Everyday practice of cutting process planning requires reliable chipbreacking and this is particularly true when machining difficult-ti-machine materials as austenitic stainless steels. The use of pressed-groove type of chipbreakers prove to provide a partly solution of the problem since their utilization unavoidably leads to increasing cutting force and chipping of the cutting edge. The use of clapped-on chipbreaker seems to solve these problems. However new design and application problem arise. This paper deals with the analysis of these problema and offers a methodology for it resolving. As a result, a new type of a clamped-on chipbreaker has been developed.


Fractals ◽  
2018 ◽  
Vol 26 (06) ◽  
pp. 1850089 ◽  
Author(s):  
HAMIDREZA NAMAZI ◽  
ALI AKHAVAN FARID ◽  
TECK SENG CHANG

Analysis of cutting forces in machining operation is an important issue. The cutting force changes randomly in milling operation where it makes a signal by plotting over time span. An important type of analysis belongs to the study of how cutting forces change along different axes. Since cutting force has fractal characteristics, in this paper for the first time we analyze the variations of complexity of cutting force signal along different axes using fractal theory. For this purpose, we consider two cutting depths and do milling operation in dry and wet machining conditions. The obtained cutting force time series was analyzed by computing the fractal dimension. The result showed that in both wet and dry machining conditions, the feed force (along [Formula: see text]-axis) has greater fractal dimension than radial force (along [Formula: see text]-axis). In addition, the radial force (along [Formula: see text]-axis) has greater fractal dimension than thrust force (along [Formula: see text]-axis). The method of analysis that was used in this research can be applied to other machining operations to study the variations of fractal structure of cutting force signal along different axes.


2015 ◽  
Vol 813-814 ◽  
pp. 317-321 ◽  
Author(s):  
C. Ramesh Kannan ◽  
P. Padmanabhan ◽  
K.P. Vasanthakumar

This paper is to evaluate the cutting force and surface roughness in turning of Glass fiber reinforced plastics (E-glass fiber) using coated carbide insert. The comparison of the results with uncoated carbide inserts. The carbide insert is coated by multilayer chemical vapour deposition process, the coating elements are TiN/Al2O3/TiCN. The experiment is carried out in the conventional lathe machine under dry condition by varying the three cutting parameter such as speed, feed and depth of cut. The cutting force is measured using a lathe tool dynamometer and surface roughness are measured by using surf tester.The result of the experiment shows the effect of machining parameter on cutting force and surface roughness. The results have confirmed that the coated carbide insert has better results than uncoated and tool life is increased.


Sign in / Sign up

Export Citation Format

Share Document