Development of the new-type indexable inserts with helical rake faces

Author(s):  
N Fang ◽  
M Wang ◽  
C Nedeß

A kind of new-type indexable insert with a three-dimensionally shaped rake face, namely the helical rake face, is developed in this present work, contributing to the formation of short conical helical chips acceptable for modern automated and unattended machining systems. The geometric parameters of the helical rake face consist of the helical gradient, the helical length, the beginning rake angle at the tool nose and the end rake angle on the cutting edge. The influences of these parameters on the side-curling of the chip and on the chip breakability are investigated. Under the cutting conditions employed in this paper, the cutting force measuring results show that the cutting component of the resultant tool force and the radial force when using the tool insert with the helical rake face are less than those when using the type CNMG120408-ZF tool insert, a kind of commercially available insert widely used.

Author(s):  
Zongwei Ren ◽  
Zhenglong Fang ◽  
Takuhiro Arakane ◽  
Toru Kizaki ◽  
Yannan Feng ◽  
...  

Abstract Power skiving is a promising method that can enhance the efficiency of gear machining. The machining mechanism is complicated due to several factors, such as the continuous variation in the rake angle and undeformed chip thickness. The tool wear process is also difficult to be evaluated due to the constantly varying in cutting conditions. Hence, to make a comprehensive understanding of the cutting process, we proposed a parametric modeling process based on the kinematics of power skiving. In this model, the undeformed cutting chip was calculated in each pass and shows the consistency with deformed cutting chip in experiments. The effective rake angle and undeformed cutting chip thickness were defined, calculated, and displayed on undeformed cutting chip for a better understanding of the cutting process. The cutting force and tool crater wear were calculated by estimating the distribution of the stress and temperature on the rake face of the cutting tool. Multiple radial-feed experimental evaluations were conducted with the gears of construction vehicles. In the results, the predicted margin of the absolute error of the normal force on the rake face was under 5% in every pass. The wear distribution on the rake face is consistent with the superimposed tool-chip contact area. The results show high potential for the optimization of the cutting tool or cutting conditions in gear power skiving.


2019 ◽  
Vol 889 ◽  
pp. 540-546
Author(s):  
Bui Ngoc Tuyen ◽  
Nguyen Chi Cong

Contour turning is a specific process of the machining on CNC lathes. In the finishing operation, to create the part profile, the turning tool must be moved in a trajectory of a complex flat curve (a toolpath) based on the part profile . The variation of feedrate vector on the toolpath according to the part profile in the machining process will results in changing dynamic geometric parameters of the cutting tool, which affects cutting conditions and machined part quality. This article presents the results of theoretical studies on the influence of part geometry on rake angle, clearance angle, approach angle and end cutting-edge angle of the turning tool. Based on the theoretical development, the authors also set up mathematical expressions that allow to define gouge-free cutting condition and the limit of feedtate for contour turning. An empirical model to define the influence of part geometry on the roughness of the part when countour turning on CNC lathe is also presented in this report.


1962 ◽  
Vol 84 (2) ◽  
pp. 282-288 ◽  
Author(s):  
K. Hitomi ◽  
G. L. Thuering

To determine the effects of cutting conditions on flank adhesion, nodular cast iron grade 60 was machined dry and wet with carbide cutting tools K6, cast iron cutting grade, and K4H, steel cutting grade. Decreasing the feed rate raised the critical cutting speed at which flank build-up occurred and lowered the resultant tool force. For tools with positive rake angle, the critical cutting speed was generally higher and tool forces were lower than for tools with negative rake angle. A clearance angle of 15 deg eliminated flank adhesion, as did the use of cutting fluids. Flank build-up was analyzed chemically and metallurgically. Methods to prevent flank adhesion are recommended.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Maohua Du ◽  
Zheng Cheng ◽  
Yanfei Zhang ◽  
Shensong Wang

Tool geometric parameters have a huge impact on tool wear. Up to now, there are only a few researches on tool geometric parameters and optimization, and the single objective function of parameter optimization used by researchers during high-speed machining (HSM) mainly is the minimum cutting force. However, the elevated cutting temperature also greatly affects tool wear due to the numerous cutting heat generation. Thus, to reduce tool wear, it is the most fundamental approach to taking into account the comprehensive control of the cutting force and cutting temperature because they are the two most important physical quantities in metal cutting processes. This work proposes a new optimization idea of the cutting-tool’s multi geometric parameters (three main parameters: rake angle, clearance angle, and cutting edge radius) with two objective functions (the cutting force and the temperature). Based on the response surface method (RSM), we have established the modified functional relation models of the influence of tool geometric parameters on the cutting force and temperature according to the finite element simulation results in high-speed cutting of Ti6Al4V. Then the models are solved by using a genetic algorithm, and the optimal tool geometric parameters values that can concurrently control the two objectives in their minimum values are obtained. The advantages lie in the strategy of the separate models of the cutting force and cutting temperature owing to their different dimensions and the solution of the models through giving the cutting force and cutting temperature different weight coefficients. The optimal results are verified by experiments, which shows that the optimal tool geometric parameters are very effective and vital for ensuring both the cutting force and the cutting temperature not too high. This work is of great significance to the cutting tool design theory and its manufacturing for reducing tool wear.


2015 ◽  
Vol 789-790 ◽  
pp. 812-820 ◽  
Author(s):  
Thararath Shansungnoen ◽  
Somkiat Tangjitsitcharoen

The objective of this research is to examine the relation between the straightness and the cutting force ratio during the CNC turning process. The cutting force is monitored and obtained by installing the dynamometer on the turret of CNC turning machine. The relation between the cutting force ratio and the straightness is investigated under the various cutting conditions, which are the cutting speed, the feed rate, the depth of cut, the tool nose radius and the rake angle. The experimentally obtained results showed that the straightness can be improved with an increase in cutting speed, tool nose radius and rake angle. The relation between the dynamic cutting force and straightness profile can be proved by checking the frequency of the cutting force in frequency domain with the use of the Fast Fourier Transform (FFT), which is the same as the straightness profile. Hence, the cutting force ratio can be used to predict the straightness during the cutting regardless of the cutting conditions. The cutting force ratio is proposed to predict the straightness during turning process by employing the exponential function for the sake of straightness. The multiple regression analysis has been utilized to calculate the regression coefficients of the in-process prediction of straightness model by using the least square method at 95% confident level. It has been proved by the cutting tests that the in-process straightness can be predicted during the cutting within ±10% measured straightness with the high accuracy of 91.85%.


2016 ◽  
Vol 7 (3) ◽  
pp. 359-369 ◽  
Author(s):  
Pradeep Kumar Patil ◽  
A I Khandwawala

Purpose – The purpose of this paper is to measure the effect of rake angle on cutting forces on the rake face of single point cutting tool with two cutting conditions. The experimental setup has been developed to measure the cutting forces. The study aims to put forward the optimum cutting condition, which improves the product quality, surface finish, productivity and tool life. Design/methodology/approach – The load cell-based tool dynamometer has been developed to measure the cutting forces. The experiments have performed on the mild steel bar of hardness 60 BHN. The friction and the normal forces have measured in dry cutting condition and with rust-X cutting fluids. The cutting forces for these two cutting conditions have calculated with constant depth of cut, speed and feed with different rake angles in the range of degrees 6, 7, 8, 9, 10, 11, 12, 15 and 20. Findings – The experimental observations shows the variations of friction and normal forces with different cutting conditions and parameters. It shows the friction force on rake face increase and the normal force on the rake face decreases with increase the rake angle. Research limitations/implications – The observations has done only for mild steel of hardness 60 BHN. It can also be perform on different materials and for different cutting conditions. Practical implications – The experimental setup developed in this research can be used in the manufacturing industry. It can help to decide and maintain the optimum cutting conditions. Originality/value – The observations have been made on an experimental setup, which fulfills the actual working/cutting conditions as per the use in industries.


2021 ◽  
Author(s):  
Xiaobo Wang ◽  
Chaosheng Song ◽  
Lulu Li ◽  
Feng Jiao

Abstract Carbon fiber reinforced plastics (CFRP) is a new type of composite material that is widely used in the aviation field, the influence mechanism of fiber cutting angle on cutting force is analyzed, a theoretical model of ultrasonic assisted cutting force for CFRP is established, ultrasonic assisted longitudinal-torsional cutting experiments of CFRP disc are carried out, and compared with normal cutting process. According to the experimental results, the radar map of the cutting force along the circumference of CFRP unidirectional laminates is established, which show that the cutting force can be reduced by ultrasonic assisted cutting compared with ordinary cutting. Under the three cutting modes, the fiber cutting angle has a great influence on the tangential force, and the radial force of the same fiber cutting angle is less than the tangential force, the maximum radial force appeared near the fiber cutting angle of 120°, while the minimum tangential force and the minimum radial force both appear near the parallel direction cutting at 0°. The research results can be used for reference in the processing of CFRP and other composite materials.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 44
Author(s):  
Yi Ge ◽  
Zhenbo Tong ◽  
Renjie Li ◽  
Fen Huang ◽  
Jiaqi Yu

Respimat®Soft MistTM is a newly developed spray inhaler. Different from traditional nebulizers, metered-dose inhalers, and dry powder inhalers, this new type of inhaler can produce aerosols with long duration, relatively slow speed, and a high content of fine particles. Investigating the effect of the key geometric parameters of the device on the atomization is of great significance for generic product development and inhaler optimization. In this paper, a laser high-speed camera experimental platform is built, and important parameters such as the geometric pattern and particle size distribution of the Respimat®Soft MistTM are measured. Computational fluid dynamics (CFD) and the volume of fluid method coupled with the Shear Stress Transport (SST) k-ω turbulence model are applied to simulate the key geometric parameters of the device. The effects of geometric parameters on the spray velocity distribution and geometric pattern are obtained. The angle of flow collision, the sphere size of the central divider and the length and width of the flow channel show significant impacts on the spray atomization.


1999 ◽  
Author(s):  
Armen L. Airikyan

Abstract Everyday practice of cutting process planning requires reliable chipbreacking and this is particularly true when machining difficult-ti-machine materials as austenitic stainless steels. The use of pressed-groove type of chipbreakers prove to provide a partly solution of the problem since their utilization unavoidably leads to increasing cutting force and chipping of the cutting edge. The use of clapped-on chipbreaker seems to solve these problems. However new design and application problem arise. This paper deals with the analysis of these problema and offers a methodology for it resolving. As a result, a new type of a clamped-on chipbreaker has been developed.


Sign in / Sign up

Export Citation Format

Share Document