scholarly journals Halo-Tolerant And Thermostable Mechanisms of An Endoglucanase From Marine Aspergillus Niger

Author(s):  
Li-Nian Cai ◽  
Sheng-Nan Xu ◽  
Tao Lu ◽  
Dong-Qiang Lin ◽  
Shan-Jing Yao

Abstract The cellulase cocktail of marine Aspergillus niger exhibited halo-tolerant and thermostable properties, which is of great potential in industrial application. In order to excavate the single tolerant cellulase components from complex cellulase cocktail, constitutive homologous expression was employed for direct obtainment of the endoglucanase (AnEGL). Enzymatic property study revealed that AnEGL exhibited a property of halo-tolerance and an outstanding thermostability in high salinity environment. Significantly, its activity increased by 29% and the half-life at 65 °C increased by 26.7-fold with the presence of 4.5 M NaCl. Molecular dynamics simulation revealed that Na+ and Cl- could form salt bridges with charged residues, and then influenced the activity of loops and the stability of substrate binding pocket, which accounted for the halo-tolerance and thermostability. Further, site-specific mutagenesis study proved that the residues Asp95 and Asp99 in the pocket were of great concern for the tolerant properties. The halo-tolerant and thermostable AnEGL was of great value in lignocellulosic utilization and the conjectural mechanisms were of referential significance for other tolerant enzymes.

2021 ◽  
Author(s):  
Titouan Jaunet-Lahary ◽  
Tatsuro Shimamura ◽  
Masahiro Hayashi ◽  
Norimichi Nomura ◽  
Kouta Hirasawa ◽  
...  

Oxalobacter formigenes is an oxalate-degrading bacterium in the gut microbiota that absorbs food-derived oxalate to use this as a carbon and energy source and thereby helps reduce the risk of kidney stone formation of the host animals. The bacterial oxalate transporter OxlT uptakes oxalate from the gut to bacterial cells and excrete formate as a degradation product, with a strict discrimination from other carboxylates that serve as nutrients. Nevertheless, the underlying mechanism remains unclear. Here, we present crystal structures of oxalate-bound and ligand-free OxlT in two different conformations, occluded and outward-facing states. The oxalate binding site contains two basic residues that form salt bridges with a dicarboxylate substrate while preventing the conformational switch to the occluded state without an acidic substrate, a disallowed state for an antiporter. The occluded ligand-binding pocket can accommodate oxalate but not larger dicarboxylates, such as metabolic intermediates. The permeation pathways from the binding pocket are completely blocked by extensive interdomain hydrophobic and ionic interactions. Nevertheless, a molecular dynamics simulation showed that a flip of a single side chain neighbouring the substrate is sufficient to trigger the gate opening. The OxlT structure indicates the underlying metabolic interactions enabling favourable symbiosis at a molecular level.


2016 ◽  
Vol 41 (3) ◽  
Author(s):  
Xiliang Chen ◽  
Xin Chen ◽  
Yafang Liu

AbstractObjective: Salt bridge interaction is one of the most important electrostatic interactions to stabilize the secondary and tertiary structures of protein. To obtain more insight into the molecular basis of prion proteins, the salt bridge networks in two animal prion proteins are studied in this work.Methods: Molecular dynamics (MD) and Flow MD (FMD) simulations are employed to investigate the salt bridges interactions of rabbit prion protein (rPrPc), Syrian hamster prion protein (syPrPc) and the variants of the two prion proteins.Results: The dynamic behaviors of salt bridges are characterized, and the relation between salt bridge interactions and local structures are also discussed. The type of salt bridges in the two prion proteins is divided into the helixloop, intra-helix and inter-helix salt bridges. It is found that the helix-loop salt bridges is more important for the stability of prion proteins than the other two kinds of slat bridge.Conclusion: The Asp201-Arg155 (rS1), Asp177-Arg163 (rS3) and Asp178-Arg164 (syS1) are the important salt bridges to stabilize the structures of rPrPc and syPrPc, respectively. The structural stability is partly depended on the number of helix-loop salt bridge.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4967 ◽  
Author(s):  
Mustapha Carab Ahmed ◽  
Elena Papaleo ◽  
Kresten Lindorff-Larsen

Salt bridges form between pairs of ionisable residues in close proximity and are important interactions in proteins. While salt bridges are known to be important both for protein stability, recognition and regulation, we still do not have fully accurate predictive models to assess the energetic contributions of salt bridges. Molecular dynamics simulation is one technique that may be used study the complex relationship between structure, solvation and energetics of salt bridges, but the accuracy of such simulations depends on the force field used. We have used NMR data on the B1 domain of protein G (GB1) to benchmark molecular dynamics simulations. Using enhanced sampling simulations, we calculated the free energy of forming a salt bridge for three possible lysine-carboxylate ionic interactions in GB1. The NMR experiments showed that these interactions are either not formed, or only very weakly formed, in solution. In contrast, we show that the stability of the salt bridges is overestimated, to different extents, in simulations of GB1 using seven out of eight commonly used combinations of fixed charge force fields and water models. We also find that the Amber ff15ipq force field gives rise to weaker salt bridges in good agreement with the NMR experiments. We conclude that many force fields appear to overstabilize these ionic interactions, and that further work may be needed to refine our ability to model quantitatively the stability of salt bridges through simulations. We also suggest that comparisons between NMR experiments and simulations will play a crucial role in furthering our understanding of this important interaction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vasyl V. Hurmach ◽  
Maksim O. Platonov ◽  
Svitlana V. Prylutska ◽  
Peter Scharff ◽  
Yuriy I. Prylutskyy ◽  
...  

AbstractBased on WHO reports the new SARS-CoV-2 coronavirus is currently widespread all over the world. So far > 162 million cases have been confirmed, including > 3 million deaths. Because of the pandemic still spreading across the globe the accomplishment of computational methods to find new potential mechanisms of virus inhibitions is necessary. According to the fact that C60 fullerene (a sphere-shaped molecule consisting of carbon) has shown inhibitory activity against various protein targets, here the analysis of the potential binding mechanism between SARS-CoV-2 proteins 3CLpro and RdRp with C60 fullerene was done; it has resulted in one and two possible binding mechanisms, respectively. In the case of 3CLpro, C60 fullerene interacts in the catalytic binding pocket. And for RdRp in the first model C60 fullerene blocks RNA synthesis pore and in the second one it prevents binding with Nsp8 co-factor (without this complex formation, RdRp can’t perform its initial functions). Then the molecular dynamics simulation confirmed the stability of created complexes. The obtained results might be a basis for other computational studies of 3CLPro and RdRp potential inhibition ways as well as the potential usage of C60 fullerene in the fight against COVID-19 disease.


2021 ◽  
Author(s):  
◽  
Florian Alexander Bourdeaux

Biological Function of Bacterial Dodecins In this thesis, the dodecins of Mycobacterium tuberculosis (MtDod), Streptomyces coelicolor (ScDod) and Streptomyces davaonensis (SdDod) were studied. Kinetic measurements of the flavin binding of MtDod revealed that the dodecin binding pocket is filled in two distinct steps, for which a kinetic model then was established and verified by experimental data. The analysis with the two-step model showed that the unique binding pocket of dodecins allows them to bind excessive amounts of flavins, while at low flavin concentrations, flavin is released and only weakly bound. This function of flavin buffering prevents accumulation of free oxidised flavins and therefore helps to keep the redox balance of the cell and prevents potential cell damage caused by excessive free flavins. To further gain insights into the role of bacterial dodecins, the effect of knocking out the dodecin encoding gene in S. davaonensis was analysed. The knockout strain showed increased concentrations of various stress related metabolites, indicating that without dodecin the cellular balance is disrupted, which supports the role of dodecins as a flavin homeostasis factor. With a self-designed affinity measurement method based on the temperature dependent dissociation of the dodecin:flavin complex, which allowed parallel screening of multiple conditions, it was shown that MtDod, ScDod and SdDod have much higher affinities towards FMN and FAD under acidic conditions. Under these conditions, the three dodecins might function as a FMN storage. M. tuberculosis encounters multiple acidic environments during its infection cycle of humans and can adopt a state of dormancy. During recovery from the dormant state, a flavin storage might be beneficial. For some Streptomyces species it was reported that the formed spores are slightly acidic and therefore ScDod and SdDod could function as flavin storages for the spores. Further details on the flavin binding mechanism of MtDod were revealed by a mutagenesis study, identifying the importance of a histidine residue at the fourth position of the protein sequence for flavin binding, but contrary to expectations, this residue seems only to be partly involved in the pH related affinity shift. The data, reported in this thesis, demonstrates that bacterial dodecins likely function as flavin homeostasis factors, which allow overall higher flavin pools in the cell without disrupting the cellular balance. Further, the reported acid-dependent increase in binding affinity suggests that under certain conditions bacterial dodecins can also function as a flavin storage system. Application of the Dodecin of M. tuberculosis In this thesis, the stability of MtDod, ScDod SdDod and HsDod was analysed to find a suitable dodecin for the use as a carrier/scaffold. Therefore, a method to easily measure the stability of dodecins was designed, which measures the ability of the dodecamer to rebind flavins after a heating phase with stepwise increasing temperatures. Using this assay and testing the stability against detergents by SDS PAGE, showed that the dodecamer of MtDod possesses an excellent stability against a vast array of conditions, like temperatures above 95 °C, low pH and about 2% SDS. By solving the crystal structure of ScDod and SdDod, the latter forming a less stable dodecamer, combined with a mutagenesis study, the importance of a specific salt bridge for dodecamer stability was revealed and might be helpful to find further highly stable dodecins. In addition to the intrinsic high stability of the MtDod dodecamer, also the robustness of the fold was tested by creating diverse MtDod fusion constructs and producing them in Escherichia coli. Here it was shown that MtDod easily tolerates the attachment of proteins up to 4-times of its own size and that both termini can be modified without affecting the dodecamer noticeably. Further, it was shown that MtDod and many MtDod fusion constructs could be purified in high yields via a protocol based on the removal of E. coli proteins through heat denaturation and subsequent centrifugation. In a case study, by fusing diverse antigens from mostly human proteins to MtDod and using these constructs to produce antibodies in rabbits, it was demonstrated that MtDod is immunogenic and presents the attached antigens to the immune system. The here reported properties of MtDod and to a lesser degree of other bacterial dodecins, show that bacterial dodecins are a valuable addition to the pool of scaffold and carrier proteins and have great potential as antigen carriers.


2019 ◽  
Vol 295 (3) ◽  
pp. 771-782
Author(s):  
Masakazu Sugishima ◽  
Kei Wada ◽  
Keiichi Fukuyama ◽  
Ken Yamamoto

Phytochromobilin (PΦB) is a red/far-red light sensory pigment in plant phytochrome. PΦB synthase is a ferredoxin-dependent bilin reductase (FDBR) that catalyzes the site-specific reduction of bilins, which are sensory and photosynthesis pigments, and produces PΦB from biliverdin, a heme-derived linear tetrapyrrole pigment. Here, we determined the crystal structure of tomato PΦB synthase in complex with biliverdin at 1.95 Å resolution. The overall structure of tomato PΦB synthase was similar to those of other FDBRs, except for the addition of a long C-terminal loop and short helices. The structure further revealed that the C-terminal loop is part of the biliverdin-binding pocket and that two basic residues in the C-terminal loop form salt bridges with the propionate groups of biliverdin. This suggested that the C-terminal loop is involved in the interaction with ferredoxin and biliverdin. The configuration of biliverdin bound to tomato PΦB synthase differed from that of biliverdin bound to other FDBRs, and its orientation in PΦB synthase was inverted relative to its orientation in the other FDBRs. Structural and enzymatic analyses disclosed that two aspartic acid residues, Asp-123 and Asp-263, form hydrogen bonds with water molecules and are essential for the site-specific A-ring reduction of biliverdin. On the basis of these observations and enzymatic assays with a V121A PΦB synthase variant, we propose the following mechanistic product release mechanism: PΦB synthase-catalyzed stereospecific reduction produces 2(R)-PΦB, which when bound to PΦB synthase collides with the side chain of Val-121, releasing 2(R)-PΦB from the synthase.


2020 ◽  
Vol 16 (11) ◽  
pp. 900-909
Author(s):  
Amal Kumar Bandyopadhyay ◽  

Salt-bridges (sb) play an important role in the folding and stability of proteins. This is deduced from the evaluation of net energy in the microenvironments (ME, residues that are 4Å away from positive and negative partners of salt-bridge and interact with them). ME’s act as a determinant of net-energy due to the intrinsic features by the sequence. The stability of extremophilic proteins is due to the presence of favorable residues at the ME without any unfavorable residues. We studied a dataset of four structures from the pdb and a homology model (PDB ID: 1HM5) to gain insights on this issue. Data shows that the presence of isolated charges and polar residues in the core of extremophilic proteins helps in the formation of stable salt-bridges with reduced desolvation. Thus, site-specific mutations with favorable residues at the ME will help develop thermo stable proteins with strong salt bridges.


2019 ◽  
Vol 22 (8) ◽  
pp. 521-533 ◽  
Author(s):  
Abdul R. Issahaku ◽  
Clement Agoni ◽  
Opeyemi S. Soremekun ◽  
Patrick A. Kubi ◽  
Ransford O. Kumi ◽  
...  

Objective: Prostaglandin 2 (PGD2) mediated signalling of Chemoattractant Receptorhomologous molecule expressed on Th2 cells (CRTh2) receptor has been implicated in the recruitment of inflammatory cells. This explains the design of highly selective compounds with innate abilities to antagonize PGD2-CRTh2 interactions and prevent pro-inflammatory allergies such as rhinitis and uncontrolled asthma. The development of PGD2-competitive CRTh2 binders; CAY10471 and Fevipiprant represent remarkable therapeutic progress even though they elicit disparate pharmacological propensities despite utilizing the same binding pocket. Methods & Results: In this study, we seek to pinpoint the underlying phenomenon associated with differential CRTh2 therapeutic inhibition by CAY10471 and Fevipiprant using membraneembedded molecular dynamics simulation. Findings revealed that the common carboxylate group of both compounds elicited strong attractive charges with active site Arg170 and Lys210. Interestingly, a distinctive feature was the steady occurrence of high-affinity salt-bridges and an Arg170-mediated pi-cation interaction with the tetrahydrocarbozole ring of CAY10471. Further investigations into the active site motions of both ligands revealed that CAY10471 was relatively more stable. Comparative binding analyses also revealed that CAY10471 exhibited higher ΔG, indicating the cruciality of the ring stabilization role mediated by Arg170. Moreover, conformational analyses revealed that the inhibitory activity of CAY10471 was more prominent on CRTh2 compared to Fevipiprant. Conclusion: These findings could further advance the strategic design of novel CRTh2 binders in the treatment of diseases related to pro-inflammatory allergies.


Author(s):  
Aditi Rathee ◽  
Anil Panwar ◽  
Seema Kumari ◽  
Sanjay Chhibber ◽  
Ashok Kumar

Introduction:: Enzymatic degradation of peptidoglycan, a structural cell wall component of Gram-positive bacteria, has attracted considerable attention being a specific target for many known antibiotics. Methods:: Peptidoglycan hydrolases are involved in bacterial lysis through peptidoglycan degradation. β-N-acetylglucosaminidase, a peptidoglycan hydrolase, acts on O-glycosidic bonds formed by N-acetylglucosamine and N-acetyl muramic acid residues of peptidoglycan. Aim of present study was to study the action of β-N-acetylglucosaminidase, on methicillin- resistant Staphylococcus aureus (MRSA) and other Gram-negative bacteria. Results:: We investigated its dynamic behaviour using molecular dynamics simulation and observed that serine and alanine residues are involved in catalytic reaction in addition to aspartic acid, histidine, lysine and arginine residues. When simulated in its bound state, the RMSD values were found lesser than crystal form in the time stamp of 1000 picoseconds revealing its stability. Structure remained stably folded over 1000 picoseconds without undergoing any major change further confirming the stability of complex. Conclusion:: It can be concluded that enzymes belonging to this category can serve as a tool in eradicating Gram-positive pathogens and associated infections.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shin Irumagawa ◽  
Kaito Kobayashi ◽  
Yutaka Saito ◽  
Takeshi Miyata ◽  
Mitsuo Umetsu ◽  
...  

AbstractThe stability of proteins is an important factor for industrial and medical applications. Improving protein stability is one of the main subjects in protein engineering. In a previous study, we improved the stability of a four-helix bundle dimeric de novo protein (WA20) by five mutations. The stabilised mutant (H26L/G28S/N34L/V71L/E78L, SUWA) showed an extremely high denaturation midpoint temperature (Tm). Although SUWA is a remarkably hyperstable protein, in protein design and engineering, it is an attractive challenge to rationally explore more stable mutants. In this study, we predicted stabilising mutations of WA20 by in silico saturation mutagenesis and molecular dynamics simulation, and experimentally confirmed three stabilising mutations of WA20 (N22A, N22E, and H86K). The stability of a double mutant (N22A/H86K, rationally optimised WA20, ROWA) was greatly improved compared with WA20 (ΔTm = 10.6 °C). The model structures suggested that N22A enhances the stability of the α-helices and N22E and H86K contribute to salt-bridge formation for protein stabilisation. These mutations were also added to SUWA and improved its Tm. Remarkably, the most stable mutant of SUWA (N22E/H86K, rationally optimised SUWA, ROSA) showed the highest Tm (129.0 °C). These new thermostable mutants will be useful as a component of protein nanobuilding blocks to construct supramolecular protein complexes.


Sign in / Sign up

Export Citation Format

Share Document