scholarly journals Genomic analyses identify biological processes of pancreatic cancer after radiotherapy

Author(s):  
Jing Li ◽  
Wei Zhang ◽  
Guangqi Liu ◽  
Hanming Gu

Abstract Radiotherapy is a crucial component in the treatment of pancreatic cancer such as pancreatic ductal adenocarcinoma (PDAC). However, the key molecules and mechanisms are not fully understood. In this study, our objective is to identify the significant molecules and potential signaling pathways in the processes of PDAC after radiotherapy by analyzing the RNA sequence. The GSE185311 dataset was created by using the Illumina NovaSeq 6000 (Homo sapiens). The KEGG and GO analyses indicated that "apoptosis", "TNF signaling", and "NF-κB signaling" are the main functional processes during radiotherapy. Moreover, we determined numerous genes including FDXR, DDB2, LY6H, ZMAT3, GPR174, LYNX1, CD300C, SPATA18, HLA-DQB1, and CEND1 by using the String and PPI network. Thus, our study may guide the clinical work on the treatment of PDAC through radiotherapy.

2021 ◽  
Author(s):  
Cailin xue ◽  
Peng gao ◽  
Xudong zhang ◽  
Xiaohan cui ◽  
Lei jin ◽  
...  

Abstract Background: Abnormal methylation of DNA sequences plays an important role in the development and progression of pancreatic cancer (PC). The purpose of this study was to identify abnormal methylation genes and related signaling pathways in PC by comprehensive bioinformatic analysis of three datasets in the Gene Expression Omnibus (GEO). Methods: Datasets of gene expression microarrays (GSE91035, GSE15471) and gene methylation microarrays (GSE37480) were downloaded from the GEO database. Aberrantly methylated-differentially expressed genes (DEGs) were analysis by GEO2R software. GO and KEGG enrichment analyses of selected genes were performed using DAVID database. A protein–protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. Core module analysis was performed by Mcode in Cytoscape. Hub genes were obtained by CytoHubba app. in Cytoscape software. Results: A total of 267 hypomethylation-high expression genes, which were enriched in biological processes of cell adhesion, biological adhesion and regulation of signaling were obtained. KEGG pathway enrichment showed ECM-receptor interaction, Focal adhesion and PI3K-Akt signaling pathway. The top 5 hub genes of PPI network were EZH2, CCNA2, CDC20, KIF11, UBE2C. As for hypermethylation-low expression genes, 202 genes were identified, which were enriched in biological processes of cellular amino acid biosynthesis process and positive regulation of PI3K activity, etc. The pathways enriched were the pancreatic secretion and biosynthesis of amino acids pathways, etc. The five significant hub genes were DLG3, GPT2, PLCB1, CXCL12 and GNG7. In addition, five genes, including CCNA2, KIF11, UBE2C, PLCB1 and GNG7, significantly associated with patient's prognosis were also identified. Conclusion: Novel genes with abnormal expression were identified, which will help us further understand the molecular mechanism and related signaling pathways of PC, and these aberrant genes could possibly serve as biomarkers for precise diagnosis and treatment of PC.


2021 ◽  
Vol 2 (2) ◽  
pp. 82-93
Author(s):  
Luca Digiacomo ◽  
Francesca Giulimondi ◽  
Daniela Pozzi ◽  
Alessandro Coppola ◽  
Vincenzo La Vaccara ◽  
...  

Due to late diagnosis, high incidence of metastasis, and poor survival rate, pancreatic cancer is one of the most leading cause of cancer-related death. Although manifold recent efforts have been done to achieve an early diagnosis of pancreatic cancer, CA-19.9 is currently the unique biomarker that is adopted for the detection, despite its limits in terms of sensitivity and specificity. To identify potential protein biomarkers for pancreatic ductal adenocarcinoma (PDAC), we used three model liposomes as nanoplatforms that accumulate proteins from human plasma and studied the composition of this biomolecular layer, which is known as protein corona. Indeed, plasma proteins adsorb on nanoparticle surface according to their abundance and affinity to the employed nanomaterial, thus even small differences between healthy and PDAC protein expression levels can be, in principle, detected. By mass spectrometry experiments, we quantified such differences and identified possible biomarkers for PDAC. Some of them are already known to exhibit different expressions in PDAC proteomes, whereas the role of other relevant proteins is still not clear. Therefore, we predict that the employment of nanomaterials and their protein corona may represent a useful tool to amplify the detection sensitivity of cancer biomarkers, which may be used for the early diagnosis of PDAC, with clinical implication for the subsequent therapy in the context of personalized medicine.


2017 ◽  
Vol 313 (5) ◽  
pp. G524-G536 ◽  
Author(s):  
Sandrina Maertin ◽  
Jason M. Elperin ◽  
Ethan Lotshaw ◽  
Matthias Sendler ◽  
Steven D. Speakman ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) displays extensive and poorly vascularized desmoplastic stromal reaction, and therefore, pancreatic cancer (PaCa) cells are confronted with nutrient deprivation and hypoxia. Here, we investigate the roles of autophagy and metabolism in PaCa cell adaptation to environmental stresses, amino acid (AA) depletion, and hypoxia. It is known that in healthy cells, basal autophagy is at a low level, but it is greatly activated by environmental stresses. By contrast, we find that in PaCa cells, basal autophagic activity is relatively high, but AA depletion and hypoxia activate autophagy only weakly or not at all, due to their failure to inhibit mechanistic target of rapamycin. Basal, but not stress-induced, autophagy is necessary for PaCa cell proliferation, and AA supply is even more critical to maintain PaCa cell growth. To gain insight into the underlying mechanisms, we analyzed the effects of autophagy inhibition and AA depletion on PaCa cell metabolism. PaCa cells display mixed oxidative/glycolytic metabolism, with oxidative phosphorylation (OXPHOS) predominant. Both autophagy inhibition and AA depletion dramatically decreased OXPHOS; furthermore, pharmacologic inhibitors of OXPHOS suppressed PaCa cell proliferation. The data indicate that the maintenance of OXPHOS is a key mechanism through which autophagy and AA supply support PaCa cell growth. We find that the expression of oncogenic activation mutation in GTPase Kras markedly promotes basal autophagy and stimulates OXPHOS through an autophagy-dependent mechanism. The results suggest that approaches aimed to suppress OXPHOS, particularly through limiting AA supply, could be beneficial in treating PDAC. NEW & NOTEWORTHY Cancer cells in the highly desmoplastic pancreatic ductal adenocarcinoma confront nutrient [i.e., amino acids (AA)] deprivation and hypoxia, but how pancreatic cancer (PaCa) cells adapt to these conditions is poorly understood. This study provides evidence that the maintenance of mitochondrial function, in particular, oxidative phosphorylation (OXPHOS), is a key mechanism that supports PaCa cell growth, both in normal conditions and under the environmental stresses. OXPHOS in PaCa cells critically depends on autophagy and AA supply. Furthermore, the oncogenic activation mutation in GTPase Kras upregulates OXPHOS through an autophagy-dependent mechanism.


2015 ◽  
Vol 148 (4) ◽  
pp. S-13
Author(s):  
Ujjwal M. Mahajan ◽  
Enno Langhoff ◽  
Eithne Costello ◽  
William Greenhalf ◽  
Christopher Halloran ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
pp. 118-121
Author(s):  
V. U. Rayn ◽  
◽  
M. A. Persidskiy ◽  
E. V. Malakhova ◽  
I. V. Anuchina ◽  
...  

Aim. To establish the association between pancreatic cancer precursor lesions and chronic opisthorchiasis. Materials and methods. A single center case-control study was conducted at a low-volume pancreatic surgery center in Khanty-Mansiysk. We retrospectively collected morphological data from 47 pancreatoduodenectomies performed for pancreatic ductal adenocarcinoma. The study group included 23 cases of pancreatic ductal adenocarcinoma with concomitant chronic Opisthorchis felineus invasion which were compared to 24 controls consisting of “pure” cancer. Qualitative analysis was performed using χ2 Pearson criterion. Exact Fisher test was used for small samples. Time to progression and overall survival rates were calculated using Kaplan-Meier survival analysis. Data were collected and analyzed in Statistica 7.0. Results. PanINs were seen in 41,7% pancreata resected for ductal adenocarcinoma of the head and in 95,7% cases of pancreatic cancer in background of chronic opisthorchiasis (р = 0,000; 95% CI 3,5-268). PanIN high grade were observed only in opisthorchiasis group. In mixed pathology invasive cancer component tended to be more dedifferentiated and advanced when compared to pure cancer group (p = 0,029). Median disease free survival was 9 mo. in both groups and overall survival was 13 mo. in non-opisthorchiasis group and 15,3 mo. in opisthorchiasis group (р = 0,437). Conclusion. Chronic opisthorchiasis is associated with pancreatic intraepithelial neoplasia. Pancreatic ductal adenocarcinoma in background of opisthorchiasis with preneoplastic lesions tend to be more advanced in stage and poorly differentiated. Disease free and overall survival have no statistically significant differences in patients with and without Opisthorchis felineus invasion.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Ewelina Barcińska ◽  
Justyna Wierzbicka ◽  
Agata Zauszkiewicz-Pawlak ◽  
Dagmara Jacewicz ◽  
Aleksandra Dabrowska ◽  
...  

Pancreatic ductal adenocarcinoma is one of the most aggressive human malignancies, where the 5-year survival rate is less than 4% worldwide. Successful treatment of pancreatic cancer is a challenge for today’s oncology. Several studies showed that increased levels of oxidative stress may cause cancer cells damage and death. Therefore, we hypothesized that oxidative as well as nitro-oxidative stress is one of the mechanisms inducing pancreatic cancer programmed cell death. We decided to use silver nanoparticles (AgNPs) (2.6 and 18 nm) as a key factor triggering the reactive oxygen species (ROS) and reactive nitrogen species (RNS) in pancreatic ductal adenocarcinoma cells (PANC-1). Previously, we have found that AgNPs induced PANC-1 cells death. Furthermore, it is known that AgNPs may induce an accumulation of ROS and alteration of antioxidant systems in different type of tumors, and they are indicated as promising agents for cancer therapy. Then, the aim of our study was to evaluate the implication of oxidative and nitro-oxidative stress in this cytotoxic effect of AgNPs against PANC-1 cells. We determined AgNP-induced increase of ROS level in PANC-1 cells and pancreatic noncancer cell (hTERT-HPNE) for comparison purposes. We found that the increase was lower in noncancer cells. Reduction of mitochondrial membrane potential and changes in the cell cycle were also observed. Additionally, we determined the increase in RNS level: nitric oxide (NO) and nitric dioxide (NO2) in PANC-1 cells, together with increase in family of nitric oxide synthases (iNOS, eNOS, and nNOS) at protein and mRNA level. Disturbance of antioxidant enzymes: superoxide dismutase (SOD1, SOD2, and SOD3), glutathione peroxidase (GPX-4) and catalase (CAT) were proved at protein and mRNA level. Moreover, we showed cells ultrastructural changes, characteristic for oxidative damage. Summarizing, oxidative and nitro-oxidative stress and mitochondrial disruption are implicated in AgNPs-mediated death in human pancreatic ductal adenocarcinoma cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yuqiong Wang ◽  
Dan Wang ◽  
Yanmiao Dai ◽  
Xiangyu Kong ◽  
Xian Zhu ◽  
...  

It has been shown that aberrant activation of the Hedgehog (Hh) and nuclear factor-kappa B (NF-κB) signaling pathways plays an important role in the pancreatic carcinogenesis, and KRAS mutation is a hallmark of pancreatic ductal adenocarcinoma (PDAC). Until now, the role of KRAS mutation in the context of crosstalk between Hh and NF-κB signaling pathways in PDAC has not been investigated. This study was to determine whether the crosstalk between the Hh and NF-κB pathways is dependent on KRAS mutation in PDAC. The correlation between Gli1, Shh, NF-κB p65 expression and KRAS mutation in PDAC tissues was firstly examined by immunohistochemistry. Next, Western blotting, qPCR, and immunofluorescence were conducted to examine the biological effects of interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α) as NF-κB signaling agonists, Shh as an Hh ligand alone or in combination with KRAS small interfering RNA (si-KRAS) in KRAS-mutant PDAC cells (MT-KRAS; SW1990 and Panc-1), wild-type KRAS PDAC cells (WT-KRAS; BxPC-3) and mutant KRAS knock-in BxPC-3 cells in vitro as well as tumor growth in vivo. KRAS mutation-dependent crosstalk between Hh and NF-κB in PDAC cells was further assessed by Ras activity and luciferase reporter assays. The aberrant Hh and NF-κB pathway activation was found in PDAC tissues with KRAS mutation. The same findings were confirmed in MT-KRAS PDAC cells and MT-KRAS knock-in BxPC-3 cells, whereas this activation was not observed in WT-KRAS PDAC cells. However, the activation was significantly down-regulated by KRAS silencing in MT-KRAS PDAC cells. Furthermore, MT-KRAS cancer cell proliferation and survival in vitro and tumor growth after inoculation with MT-KRAS cells in vivo were promoted by NF-κB and Hh signaling activation. The pivotal factor for co-activation of NF-κB and Hh signaling is MT-KRAS protein upregulation, showing that positive crosstalk between Hh and NF-κB pathways is dependent upon KRAS mutation in PDAC.


2020 ◽  
Author(s):  
S. Mahnaz ◽  
L. Das Roy ◽  
M. Bose ◽  
C. De ◽  
S. Nath ◽  
...  

ABSTRACTMyeloid-derived suppressor cells (MDSCs) are immature myeloid cells that are responsible for immunosuppression in tumor microenvironment. Here we report the impact of mucin 1 (MUC1), a transmembrane glycoprotein, on proliferation and functional activity of MDSCs. To determine the role of MUC1 in MDSC phenotype, we analyzed MDSCs derived from wild type (WT) and MUC1-knockout (MUC1KO) mice bearing pancreatic ductal adenocarcinoma KCKO and breast cancer C57MG xenografts. We observed enhanced tumor growth in MUC1KO mice compared to WT mice in both pancreatic KCKO and breast C57MG cancer models due to increased MDSC population and enrichment of Tregs in tumor microenvironment. Our current study shows that knockdown of MUC1 in MDSCs promotes proliferation and immature suppressive phenotype indicated by increased level of iNOS, ARG1 activity and TGF-β secretion under cancer conditions. Increased activity of MDSCs leads to repression of IL-2 and IFN-ɣ production by T-cells. We were able to find that MDSCs from MUC1KO mice have higher levels of c-Myc and activated pSTAT3 as compared to MUC1 WT mice, that are signaling pathways leading to increased survival, proliferation and prevention of maturation. In summary, MUC1 regulates signaling pathways that maintain immunosuppressive properties of MDSCs. Thus, immunotherapy must target only tumor associated MUC1 on epithelial cells and not MUC1 on hematopoietic cells to avoid expansion and suppressive functions of MDSC.


2020 ◽  
Vol 2 ◽  
pp. 22
Author(s):  
Dominic O'Connor ◽  
Malcolm Brown ◽  
Roy Bowdery ◽  
Martin Eatock ◽  
Claire Hulme ◽  
...  

Background: Patients with resectable pancreatic ductal adenocarcinoma (PDAC), undergoing adjuvant chemotherapy can experience an array of complications including fatigue, pain and the loss of physical function. Accumulating evidence from largely early stage breast cancer studies supports exercise as an adjunct therapy to help mitigate treatment complications. However, there is a lack of evidence of its feasibility in pancreatic cancer. The purpose of this study is to explore the initial feasibility of delivering a supervised, individualized, and progressive concurrent exercise intervention to individuals with resectable PDAC who are undergoing adjuvant therapy. Methodology: Ten patients with resectable PDAC undergoing adjuvant chemotherapy will be recruited. Clinical care teams will screen patients against inclusion criteria to determine eligibility. All enrolled participants will complete a 16-week, supervised, tailored, moderate intensity exercise intervention consisting of aerobic and muscle strengthening activities. The primary outcome will be feasibility of delivering a supervised exercise intervention. Secondary outcomes will include measures of physical fitness, fatigue, and quality of life. Outcomes will be measured at baseline (T1), 16 weeks (T2) and 3 months (T3). The feasibility, acceptability and potential utility of the supervised exercise intervention will be explored qualitatively through semi-structured interviews with key stakeholders (e.g. active participants, eligible participants that declined participation and the research staff including exercise physiologists and recruiting clinicians).  The use of health and social care services, medications and personal expenses incurred during the trial will also be used to determine cost-effectiveness of this intervention and a potential further RCT in PDAC. Discussion: The overall aim of this study is to determine the utility of a supervised, tailored, moderate intensity exercise intervention in PDAC patients undergoing adjuvant chemotherapy.  This feasibility study will help inform the design of future randomised controlled trials to determine the efficacy of the exercise intervention in PDAC.


Sign in / Sign up

Export Citation Format

Share Document