scholarly journals The Addition of Epistatic Genetic Effects Increases Genomic Prediction Accuracy for Reproduction and Production Traits in Duroc Pigs Using Genomic Models

Author(s):  
Jian Cheng ◽  
Francesco Tiezzi ◽  
Jeremy Howard ◽  
Christian Maltecca ◽  
Jicai Jiang

Abstract Background: Genomic selection has been implemented in livestock genetic evaluations for years. However, currently most genomic selection models only consider the additive effects associated with SNP markers and nonadditive genetic effects have been for the most part ignored. Methods: Production traits for 26,735 to 27,647 Duroc pigs and reproductive traits for 5,338 sows were used, including off-test body weight (WT), off-test back fat (BF), off-test loin muscle depth (MS), number born alive (NBA), number born dead (NBD), and number weaned (NW). All animals were genotyped with the PorcineSNP60K Bead Chip. Variance components were estimated using a linear mixed model that includes inbreeding coefficient, additive, dominance, additive-by-additive, additive-by-dominance, dominance-by-dominance effect, and common litter environmental effect. Genomic prediction performance, including all nonadditive genetic effects, was compared with a reduced model that included only additive genetic effect. Results: Significant estimates of additive-by-additive effect variance were observed for NBA, BF, and WT (31%, 9%, and 10%, respectively). Production traits showed significant large estimates of additive-by-dominance variance (9%-23%). MS also showed large estimate of dominance-by-dominance variance (10%). Dominance effect variance estimates were low for all traits (0%-2%). Compared to the reduced model, prediction accuracies using the full model, including nonadditive effects, increased significantly by 12%, 12%, and 1% for NBA, WT, and MS, respectively. A strong dominance association signal with BF was identified near AK5.Conclusions: Sizable estimates of epistatic effects were found for the reproduction and production traits, while the dominance effect was relatively small for all traits yet significant for all production traits. Including nonadditive effects, especially epistatic effects in the genomic prediction model, significantly improved prediction accuracy for NBA, WT, and MS.

Animals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 672 ◽  
Author(s):  
Beatriz Castro Dias Castro Dias Cuyabano ◽  
Hanna Wackel ◽  
Donghyun Shin ◽  
Cedric Gondro

Genomic models that incorporate dense marker information have been widely used for predicting genomic breeding values since they were first introduced, and it is known that the relationship between individuals in the reference population and selection candidates affects the prediction accuracy. When genomic evaluation is performed over generations of the same population, prediction accuracy is expected to decay if the reference population is not updated. Therefore, the reference population must be updated in each generation, but little is known about the optimal way to do it. This study presents an empirical assessment of the prediction accuracy of genomic breeding values of production traits, across five generations in two Korean pig breeds. We verified the decay in prediction accuracy over time when the reference population was not updated. Additionally we compared the prediction accuracy using only the previous generation as the reference population, as opposed to using all previous generations as the reference population. Overall, the results suggested that, although there is a clear need to continuously update the reference population, it may not be necessary to keep all ancestral genotypes. Finally, comprehending how the accuracy of genomic prediction evolves over generations within a population adds relevant information to improve the performance of genomic selection.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 719
Author(s):  
Mulusew Fikere ◽  
Denise M. Barbulescu ◽  
M. Michelle Malmberg ◽  
Pankaj Maharjan ◽  
Phillip A. Salisbury ◽  
...  

Genomic selection accelerates genetic progress in crop breeding through the prediction of future phenotypes of selection candidates based on only their genomic information. Here we report genetic correlations and genomic prediction accuracies in 22 agronomic, disease, and seed quality traits measured across multiple years (2015–2017) in replicated trials under rain-fed and irrigated conditions in Victoria, Australia. Two hundred and two spring canola lines were genotyped for 62,082 Single Nucleotide Polymorphisms (SNPs) using transcriptomic genotype-by-sequencing (GBSt). Traits were evaluated in single trait and bivariate genomic best linear unbiased prediction (GBLUP) models and cross-validation. GBLUP were also expanded to include genotype-by-environment G × E interactions. Genomic heritability varied from 0.31to 0.66. Genetic correlations were highly positive within traits across locations and years. Oil content was positively correlated with most agronomic traits. Strong, not previously documented, negative correlations were observed between average internal infection (a measure of blackleg disease) and arachidic and stearic acids. The genetic correlations between fatty acid traits followed the expected patterns based on oil biosynthesis pathways. Genomic prediction accuracy ranged from 0.29 for emergence count to 0.69 for seed yield. The incorporation of G × E translates into improved prediction accuracy by up to 6%. The genomic prediction accuracies achieved indicate that genomic selection is ready for application in canola breeding.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Cheng Bian ◽  
Dzianis Prakapenka ◽  
Cheng Tan ◽  
Ruifei Yang ◽  
Di Zhu ◽  
...  

Abstract Background Genomic selection using single nucleotide polymorphism (SNP) markers has been widely used for genetic improvement of livestock, but most current methods of genomic selection are based on SNP models. In this study, we investigated the prediction accuracies of haplotype models based on fixed chromosome distances and gene boundaries compared to those of SNP models for genomic prediction of phenotypic values. We also examined the reasons for the successes and failures of haplotype genomic prediction. Methods We analyzed a swine population of 3195 Duroc boars with records on eight traits: body judging score (BJS), teat number (TN), age (AGW), loin muscle area (LMA), loin muscle depth (LMD) and back fat thickness (BF) at 100 kg live weight, and average daily gain (ADG) and feed conversion rate (FCR) from 30 to100 kg live weight. Ten-fold validation was used to evaluate the prediction accuracy of each SNP model and each multi-allelic haplotype model based on 488,124 autosomal SNPs from low-coverage sequencing. Haplotype blocks were defined using fixed chromosome distances or gene boundaries. Results Compared to the best SNP model, the accuracy of predicting phenotypic values using a haplotype model was greater by 7.4% for BJS, 7.1% for AGW, 6.6% for ADG, 4.9% for FCR, 2.7% for LMA, 1.9% for LMD, 1.4% for BF, and 0.3% for TN. The use of gene-based haplotype blocks resulted in the best prediction accuracy for LMA, LMD, and TN. Compared to estimates of SNP additive heritability, estimates of haplotype epistasis heritability were strongly correlated with the increase in prediction accuracy by haplotype models. The increase in prediction accuracy was largest for BJS, AGW, ADG, and FCR, which also had the largest estimates of haplotype epistasis heritability, 24.4% for BJS, 14.3% for AGW, 14.5% for ADG, and 17.7% for FCR. SNP and haplotype heritability profiles across the genome identified several genes with large genetic contributions to phenotypes: NUDT3 for LMA, LMD and BF, VRTN for TN, COL5A2 for BJS, BSND for ADG, and CARTPT for FCR. Conclusions Haplotype prediction models improved the accuracy for genomic prediction of phenotypes in Duroc pigs. For some traits, the best prediction accuracy was obtained with haplotypes defined using gene regions, which provides evidence that functional genomic information can improve the accuracy of haplotype genomic prediction for certain traits.


2020 ◽  
Vol 11 ◽  
Author(s):  
Christian R. Werner ◽  
R. Chris Gaynor ◽  
Gregor Gorjanc ◽  
John M. Hickey ◽  
Tobias Kox ◽  
...  

Over the last two decades, the application of genomic selection has been extensively studied in various crop species, and it has become a common practice to report prediction accuracies using cross validation. However, genomic prediction accuracies obtained from random cross validation can be strongly inflated due to population or family structure, a characteristic shared by many breeding populations. An understanding of the effect of population and family structure on prediction accuracy is essential for the successful application of genomic selection in plant breeding programs. The objective of this study was to make this effect and its implications for practical breeding programs comprehensible for breeders and scientists with a limited background in quantitative genetics and genomic selection theory. We, therefore, compared genomic prediction accuracies obtained from different random cross validation approaches and within-family prediction in three different prediction scenarios. We used a highly structured population of 940 Brassica napus hybrids coming from 46 testcross families and two subpopulations. Our demonstrations show how genomic prediction accuracies obtained from among-family predictions in random cross validation and within-family predictions capture different measures of prediction accuracy. While among-family prediction accuracy measures prediction accuracy of both the parent average component and the Mendelian sampling term, within-family prediction only measures how accurately the Mendelian sampling term can be predicted. With this paper we aim to foster a critical approach to different measures of genomic prediction accuracy and a careful analysis of values observed in genomic selection experiments and reported in literature.


2019 ◽  
Vol 10 (2) ◽  
pp. 581-590 ◽  
Author(s):  
Smaragda Tsairidou ◽  
Alastair Hamilton ◽  
Diego Robledo ◽  
James E. Bron ◽  
Ross D. Houston

Genomic selection enables cumulative genetic gains in key production traits such as disease resistance, playing an important role in the economic and environmental sustainability of aquaculture production. However, it requires genome-wide genetic marker data on large populations, which can be prohibitively expensive. Genotype imputation is a cost-effective method for obtaining high-density genotypes, but its value in aquaculture breeding programs which are characterized by large full-sibling families has yet to be fully assessed. The aim of this study was to optimize the use of low-density genotypes and evaluate genotype imputation strategies for cost-effective genomic prediction. Phenotypes and genotypes (78,362 SNPs) were obtained for 610 individuals from a Scottish Atlantic salmon breeding program population (Landcatch, UK) challenged with sea lice, Lepeophtheirus salmonis. The genomic prediction accuracy of genomic selection was calculated using GBLUP approaches and compared across SNP panels of varying densities and composition, with and without imputation. Imputation was tested when parents were genotyped for the optimal SNP panel, and offspring were genotyped for a range of lower density imputation panels. Reducing SNP density had little impact on prediction accuracy until 5,000 SNPs, below which the accuracy dropped. Imputation accuracy increased with increasing imputation panel density. Genomic prediction accuracy when offspring were genotyped for just 200 SNPs, and parents for 5,000 SNPs, was 0.53. This accuracy was similar to the full high density and optimal density dataset, and markedly higher than using 200 SNPs without imputation. These results suggest that imputation from very low to medium density can be a cost-effective tool for genomic selection in Atlantic salmon breeding programs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247824
Author(s):  
Morteza Shabannejad ◽  
Mohammad-Reza Bihamta ◽  
Eslam Majidi-Hervan ◽  
Hadi Alipour ◽  
Asa Ebrahimi

The present study aimed to improve the accuracy of genomic prediction of 16 agronomic traits in a diverse bread wheat (Triticum aestivum L.) germplasm under terminal drought stress and well-watered conditions in semi-arid environments. An association panel including 87 bread wheat cultivars and 199 landraces from Iran bread wheat germplasm was planted under two irrigation systems in semi-arid climate zones. The whole association panel was genotyped with 9047 single nucleotide polymorphism markers using the genotyping-by-sequencing method. A number of 23 marker-trait associations were selected for traits under each condition, whereas 17 marker-trait associations were common between terminal drought stress and well-watered conditions. The identified marker-trait associations were mostly single nucleotide polymorphisms with minor allele effects. This study examined the effect of population structure, genomic selection method (ridge regression-best linear unbiased prediction, genomic best-linear unbiased predictions, and Bayesian ridge regression), training set size, and type of marker set on genomic prediction accuracy. The prediction accuracies were low (-0.32) to moderate (0.52). A marker set including 93 significant markers identified through genome-wide association studies with P values ≤ 0.001 increased the genomic prediction accuracy for all traits under both conditions. This study concluded that obtaining the highest genomic prediction accuracy depends on the extent of linkage disequilibrium, the genetic architecture of trait, genetic diversity of the population, and the genomic selection method. The results encouraged the integration of genome-wide association study and genomic selection to enhance genomic prediction accuracy in applied breeding programs.


2019 ◽  
Author(s):  
Christos Palaiokostas ◽  
Tomas Vesely ◽  
Martin Kocour ◽  
Martin Prchal ◽  
Dagmar Pokorova ◽  
...  

AbstractGenomic selection (GS) is increasingly applied in breeding programmes of major aquaculture species, enabling improved prediction accuracy and genetic gain compared to pedigree-based approaches. Koi Herpesvirus disease (KHVD) is notifiable by the World Organisation for Animal Health and the European Union, causing major economic losses to carp production. Genomic selection has potential to breed carp with improved resistance to KHVD, thereby contributing to disease control. In the current study, Restriction-site Associated DNA sequencing (RAD-seq) was applied on a population of 1,425 common carp juveniles which had been challenged with Koi herpes virus, followed by sampling of survivors and mortalities. Genomic selection (GS) was tested on a wide range of scenarios by varying both SNP densities and the genetic relationships between training and validation sets. The accuracy of correctly identifying KHVD resistant animals using genomic selection was between 8 and 18 % higher than pedigree best linear unbiased predictor (pBLUP) depending on the tested scenario. Furthermore, minor decreases in prediction accuracy were observed with decreased SNP density. However, the genetic relationship between the training and validation sets was a key factor in the efficacy of genomic prediction of KHVD resistance in carp, with substantially lower prediction accuracy when the relationships between the training and validation sets did not contain close relatives.


2021 ◽  
Vol 12 ◽  
Author(s):  
Stefan Wilson ◽  
Chaozhi Zheng ◽  
Chris Maliepaard ◽  
Han A. Mulder ◽  
Richard G. F. Visser ◽  
...  

Use of genomic prediction (GP) in tetraploid is becoming more common. Therefore, we think it is the right time for a comparison of GP models for tetraploid potato. GP models were compared that contrasted shrinkage with variable selection, parametric vs. non-parametric models and different ways of accounting for non-additive genetic effects. As a complement to GP, association studies were carried out in an attempt to understand the differences in prediction accuracy. We compared our GP models on a data set consisting of 147 cultivars, representing worldwide diversity, with over 39 k GBS markers and measurements on four tuber traits collected in six trials at three locations during 2 years. GP accuracies ranged from 0.32 for tuber count to 0.77 for dry matter content. For all traits, differences between GP models that utilised shrinkage penalties and those that performed variable selection were negligible. This was surprising for dry matter, as only a few additive markers explained over 50% of phenotypic variation. Accuracy for tuber count increased from 0.35 to 0.41, when dominance was included in the model. This result is supported by Genome Wide Association Study (GWAS) that found additive and dominance effects accounted for 37% of phenotypic variation, while significant additive effects alone accounted for 14%. For tuber weight, the Reproducing Kernel Hilbert Space (RKHS) model gave a larger improvement in prediction accuracy than explicitly modelling epistatic effects. This is an indication that capturing the between locus epistatic effects of tuber weight can be done more effectively using the semi-parametric RKHS model. Our results show good opportunities for GP in 4x potato.


2000 ◽  
Vol 71 (3) ◽  
pp. 421-426 ◽  
Author(s):  
I. Misztal ◽  
B. Besbes

AbstractEstimates of variance components for five egg traits on 26265 laying hens were obtained by restricted maximum likelihood (REML) using several models. In the DOMFS model, the effects included hatch group, additive genetic, full-sib, parental dominance and inbreeding depression. In the DOM model, the full-sib effect was eliminated. In the FS model, the parental dominance effect was eliminated. In the ADD model, both the full-sib and the dominance effects were eliminated. In the DOMFS model, the estimates of the full-sib variance were generally higher for egg production traits and lower for egg characteristics than those of the parental dominance variance. However, this model has partially failed in separating these two components. When the full-sib effect was removed from the model, almost all of its estimated variance moved to the estimated parental dominance variance. When the parental dominance effect was removed from the model, almost all of its estimated variance moved to the estimated full-sib variance. The estimates obtained with REML and the DOM model were compared with those obtained by method R and tilde-hat methodologies. The d2 (ratio of dominance variance to total variance) differed by up to 86% for method R and up to 225% for tilde-hat. The h2 differed by up to 26 and 28%, respectively. For data sets that are too large to be analysed with REML, method R is a feasible alternative. A model for estimation of dominance variance should also include the full-sib or a similar effect, provided the data set is large. Similarly, to analyse egg production traits, the model should include at least the full-sib effect.


Sign in / Sign up

Export Citation Format

Share Document