Geodetic Landmarks Soil Loss Susceptibility Using RUSLE and Climate Change Scenarios

Author(s):  
Leonard Niero da Silveira ◽  
Víctor Fernandez Nascimento ◽  
Fernanda Casagrande ◽  
Sergio Florencio de Souza ◽  
Jean Pierre Henry Balbaud Ometto

Abstract Geodetic landmarks (GLs) are essential for obtaining the precise height, horizontal coordinates, and the Earth's gravity field. Once physically implanted on the surface, they are susceptible to movement and displacement. This study aims to assess the soil susceptibility of GLs for past and future scenarios through the Revised Soil Loss Equation (RUSLE). So the soil loss estimations were made for the GLs in Brazil's southern Santa Catarina region. Our results showed average soil loss values, reaching 175915 t/ha/year, while the GLs were 2109 t/ha/year. There was an increase in GLs in the null class, mainly caused by urban infrastructure increase. At the same time, a decrease occurred in the low, very severe, severe, and moderate classes. In contrast, for future scenarios, an increase in the GLs average soil loss was found until 2100. However, it is essential to highlight that the most relevant increase occurred in the 2021-2040 period. After that, some scenarios as ssp126 remained stable, ssp245 and ssp370 slightly increased while ssp585 increased the most, reaching a maximum value of 2364 t/ha/year until 2100. There are a stability in the null class with a little decreasing in the low and moderate classes. In severe and very severe classes, there are a increase in the almost all scenarios. This behavior take account only the rainfall, thus for a better analysis, would be necessary the forecast of land cover change. Therefore, the climate simulations can be used to understand the effects of climate change on soil erosion to support decision-making.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hector Lobeto ◽  
Melisa Menendez ◽  
Iñigo J. Losada

AbstractExtreme waves will undergo changes in the future when exposed to different climate change scenarios. These changes are evaluated through the analysis of significant wave height (Hs) return values and are also compared with annual mean Hs projections. Hourly time series are analyzed through a seven-member ensemble of wave climate simulations and changes are estimated in Hs for return periods from 5 to 100 years by the end of the century under RCP4.5 and RCP8.5 scenarios. Despite the underlying uncertainty that characterizes extremes, we obtain robust changes in extreme Hs over more than approximately 25% of the ocean surface. The results obtained conclude that increases cover wider areas and are larger in magnitude than decreases for higher return periods. The Southern Ocean is the region where the most robust increase in extreme Hs is projected, showing local increases of over 2 m regardless the analyzed return period under RCP8.5 scenario. On the contrary, the tropical north Pacific shows the most robust decrease in extreme Hs, with local decreases of over 1.5 m. Relevant divergences are found in several ocean regions between the projected behavior of mean and extreme wave conditions. For example, an increase in Hs return values and a decrease in annual mean Hs is found in the SE Indian, NW Atlantic and NE Pacific. Therefore, an extrapolation of the expected change in mean wave conditions to extremes in regions presenting such divergences should be adopted with caution, since it may lead to misinterpretation when used for the design of marine structures or in the evaluation of coastal flooding and erosion.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alizée Chemison ◽  
Gilles Ramstein ◽  
Adrian M. Tompkins ◽  
Dimitri Defrance ◽  
Guigone Camus ◽  
...  

AbstractStudies about the impact of future climate change on diseases have mostly focused on standard Representative Concentration Pathway climate change scenarios. These scenarios do not account for the non-linear dynamics of the climate system. A rapid ice-sheet melting could occur, impacting climate and consequently societies. Here, we investigate the additional impact of a rapid ice-sheet melting of Greenland on climate and malaria transmission in Africa using several malaria models driven by Institute Pierre Simon Laplace climate simulations. Results reveal that our melting scenario could moderate the simulated increase in malaria risk over East Africa, due to cooling and drying effects, cause a largest decrease in malaria transmission risk over West Africa and drive malaria emergence in southern Africa associated with a significant southward shift of the African rain-belt. We argue that the effect of such ice-sheet melting should be investigated further in future public health and agriculture climate change risk assessments.


Author(s):  
Irvin Alberto Mosquera ◽  
Luis V. S. Sagrilo ◽  
Paulo M. Videiro ◽  
Fernando Sousa

Abstract Design life of offshore structures is in general in the 20-30 years range, with some cases going up to 50 years. Fatigue is one of the major design criteria for such structures. Climate change may affect the fatigue life of offshore structures, it would be necessary to update the design procedures to take into account climate change effects on structural performance. This paper aims to investigate the impact of climate change in the long-term fatigue life of offshore structures due to wave loading. For this purpose, available environmental conditions for two locations (South East Brazilian Coast and North Atlantic Ocean) generated by the HadGEM-2S global climate model, considering RCP 4.5 and RCP 8.5 (Representative Concentration Pathway - RCP) future scenarios and the historical (past) scenarios are considered. The assessment in both locations is performed for two structural models: an idealized stress spectrum for a generic fatigue hot-spot and a Steel Lazy Wave Riser (SLWR) connected to a Floating Production Storage and Offloading (FPSO). Fatigue life is estimated using the S-N curve approach. Results show that the impact on the fatigue life depends on the structure dynamic characteristics, on the geographic location and mainly on the greenhouse emission scenario. In general, for the Brazilian location, when compared to the historical scenario, most of the future scenarios lead to slightly higher fatigue damages (lower fatigue lives). On the other hand, for the North Atlantic location, there is not a clear trend for future climate change scenarios.


2014 ◽  
Author(s):  
Nicole Angeli ◽  
Javier Otegui ◽  
Margot Wood ◽  
Emma P. Gomez-Ruiz

Global change will causes species range shifts, affecting species interactions. The conservation implications of species range shifts are widely unknown. Through forming an ecology-bioinformatics partnership at the National Evolutionary Synthesis Center-Encyclopedia of Life-Biodiversity Heritage Library Research Sprint, we developed an analytical pipeline to test whether global trends are forcing shifts of mutually dependent species in different spatial directions. We calculated potential overlap between dependent species across climate scenarios within protected areas. We selected the Great Green Macaw (Ara ambiguus) and its nesting host tree the Giant Almendro (Dipteryx panamensis) as a proof-of-concept species pair that will be affected by range shifts. We demonstrate with modeling that the Great Green Macaw will lose approximately 64.0% of suitable habitat in future scenarios, while the Giant Almendro will lose 59.7% of suitable habitat. Species habitat overlaps across 85.3 % of its currently predicted distribution and 69.07% of the remaining habitat predicted in future scenarios. After accounting for spatially explicit protected areas networks, only 20.3% and 40.2 % of remaining habitat persists within protected areas across climate scenarios for the Almendro and Macaw, respectively, and 19.9 % of that habitat overlaps between the species. Currently, we are conducting a literature review to select and expand our list of species for use in the pipeline to detect trends for climate readiness planning in protected areas networks. The analytical pipeline will produce habitat suitability maps for multiple climate scenarios based on current distributions, and these maps will potentially be embedded into the Encyclopedia of Life as free, downloadable files. This is just one of several broader impact products from the research. This work demonstrates that modeling the future distribution of species is limited by biotic interactions and conservation planning should account for climate change scenarios.


Author(s):  
Nicole F. Angeli ◽  
Javier Otegui ◽  
Margot Wood ◽  
Emma P. Gomez-Ruiz

Global change will causes species range shifts, affecting species interactions. The conservation implications of species range shifts are widely unknown. Through forming an ecology-bioinformatics partnership at the National Evolutionary Synthesis Center-Encyclopedia of Life-Biodiversity Heritage Library Research Sprint, we developed an analytical pipeline to test whether global trends are forcing shifts of mutually dependent species in different spatial directions. We calculated potential overlap between dependent species across climate scenarios within protected areas. We selected the Great Green Macaw (Ara ambiguus) and its nesting host tree the Giant Almendro (Dipteryx panamensis) as a proof-of-concept species pair that will be affected by range shifts. We demonstrate with modeling that the Great Green Macaw will lose approximately 64.0% of suitable habitat in future scenarios, while the Giant Almendro will lose 59.7% of suitable habitat. Species habitat overlaps across 85.3 % of its currently predicted distribution and 69.07% of the remaining habitat predicted in future scenarios. After accounting for spatially explicit protected areas networks, only 20.3% and 40.2 % of remaining habitat persists within protected areas across climate scenarios for the Almendro and Macaw, respectively, and 19.9 % of that habitat overlaps between the species. Currently, we are conducting a literature review to select and expand our list of species for use in the pipeline to detect trends for climate readiness planning in protected areas networks. The analytical pipeline will produce habitat suitability maps for multiple climate scenarios based on current distributions, and these maps will potentially be embedded into the Encyclopedia of Life as free, downloadable files. This is just one of several broader impact products from the research. This work demonstrates that modeling the future distribution of species is limited by biotic interactions and conservation planning should account for climate change scenarios.


2014 ◽  
Author(s):  
Nicole F. Angeli ◽  
Javier Otegui ◽  
Margot Wood ◽  
Emma P. Gomez-Ruiz

Global change will causes species range shifts, affecting species interactions. The conservation implications of species range shifts are widely unknown. Through forming an ecology-bioinformatics partnership at the National Evolutionary Synthesis Center-Encyclopedia of Life-Biodiversity Heritage Library Research Sprint, we developed an analytical pipeline to test whether global trends are forcing shifts of mutually dependent species in different spatial directions. We calculated potential overlap between dependent species across climate scenarios within protected areas. We selected the Great Green Macaw (Ara ambiguus) and its nesting host tree the Giant Almendro (Dipteryx panamensis) as a proof-of-concept species pair that will be affected by range shifts. We demonstrate with modeling that the Great Green Macaw will lose approximately 64.0% of suitable habitat in future scenarios, while the Giant Almendro will lose 59.7% of suitable habitat. Species habitat overlaps across 85.3 % of its currently predicted distribution and 69.07% of the remaining habitat predicted in future scenarios. After accounting for spatially explicit protected areas networks, only 20.3% and 40.2 % of remaining habitat persists within protected areas across climate scenarios for the Almendro and Macaw, respectively, and 19.9 % of that habitat overlaps between the species. Currently, we are conducting a literature review to select and expand our list of species for use in the pipeline to detect trends for climate readiness planning in protected areas networks. The analytical pipeline will produce habitat suitability maps for multiple climate scenarios based on current distributions, and these maps will potentially be embedded into the Encyclopedia of Life as free, downloadable files. This is just one of several broader impact products from the research. This work demonstrates that modeling the future distribution of species is limited by biotic interactions and conservation planning should account for climate change scenarios.


Zootaxa ◽  
2017 ◽  
Vol 4237 (1) ◽  
pp. 91 ◽  
Author(s):  
IGNACIO MINOLI ◽  
LUCIANO JAVIER AVILA

The consequences of global climate change can already be seen in many physical and biological systems and these effects could change the distribution of suitable areas for a wide variety of organisms to the middle of this century. We analyzed the current habitat use and we projected the suitable area of present conditions into the geographical space of future scenarios (2050), to assess and quantify whether future climate change would affect the distribution and size of suitable environments in two Pristidactylus lizard species. Comparing the habitat use and future forecasts of the two studied species, P. achalensis showed a more restricted use of available resource units (RUs) and a moderate reduction of the potential future area. On the contrary, P. nigroiugulus uses more available RUs and has a considerable area decrease for both future scenarios. These results suggest that both species have a moderately different trend towards reducing available area of suitable habitats, the persistent localities for both 2050 CO2 concentration models, and in the available RUs used. We discussed the relation between size and use of the current habitat, changes in future projections along with the protected areas from present-future and the usefulness of these results in conservation plans. This work illustrates how ectothermic organisms might have to face major changes in their availability suitable areas as a consequence of the effect of future climate change.  


2016 ◽  
Vol 51 (5) ◽  
pp. 586-598 ◽  
Author(s):  
Denise Navia ◽  
Emília Hamada ◽  
Manoel Guedes Correa Gondim Jr. ◽  
Norton Polo Benito

Abstract: The objective of this work was to predict the spatial distribution of the red palm mite, Raoiella indica (Acari: Tenuipalpidae), in Brazil under current and future climate change scenarios. A mapping method of species distribution based on the geographic information system (GIS) was used. The maps were constructed taking into account ranges of favorability for temperature and relative humidity. Favorability levels were defined considering the available information on pest biology and population dynamics. To characterize the current climatic conditions, information was referenced to the climate normal from 1961 to 1990. Future scenarios for the models were the A2 and B1 gas emission scenarios from the Intergovernmental Panel on Climate Change, focusing on the periods of 2011-2040, 2041-2070, and 2071-2100. The constructed maps showed that, for the reference period, Brazil presents extensive areas with favorable or very favorable conditions for the establishment of red palm mite populations. An increasing favorability was observed for future scenarios when compared with the reference period, indicating that the pest impact will worsen if it is already widely spread and causing damage in the country. Under current and future climate scenarios, most of the favorable and very favorable areas for red palm mite are in northeastern Brazil.


Sign in / Sign up

Export Citation Format

Share Document