Conservation assessments in climate change scenarios: spatial perspectives for present and future in two Pristidactylus (Squamata: Leiosauridae) lizards from Argentina

Zootaxa ◽  
2017 ◽  
Vol 4237 (1) ◽  
pp. 91 ◽  
Author(s):  
IGNACIO MINOLI ◽  
LUCIANO JAVIER AVILA

The consequences of global climate change can already be seen in many physical and biological systems and these effects could change the distribution of suitable areas for a wide variety of organisms to the middle of this century. We analyzed the current habitat use and we projected the suitable area of present conditions into the geographical space of future scenarios (2050), to assess and quantify whether future climate change would affect the distribution and size of suitable environments in two Pristidactylus lizard species. Comparing the habitat use and future forecasts of the two studied species, P. achalensis showed a more restricted use of available resource units (RUs) and a moderate reduction of the potential future area. On the contrary, P. nigroiugulus uses more available RUs and has a considerable area decrease for both future scenarios. These results suggest that both species have a moderately different trend towards reducing available area of suitable habitats, the persistent localities for both 2050 CO2 concentration models, and in the available RUs used. We discussed the relation between size and use of the current habitat, changes in future projections along with the protected areas from present-future and the usefulness of these results in conservation plans. This work illustrates how ectothermic organisms might have to face major changes in their availability suitable areas as a consequence of the effect of future climate change.  

2016 ◽  
Vol 51 (5) ◽  
pp. 586-598 ◽  
Author(s):  
Denise Navia ◽  
Emília Hamada ◽  
Manoel Guedes Correa Gondim Jr. ◽  
Norton Polo Benito

Abstract: The objective of this work was to predict the spatial distribution of the red palm mite, Raoiella indica (Acari: Tenuipalpidae), in Brazil under current and future climate change scenarios. A mapping method of species distribution based on the geographic information system (GIS) was used. The maps were constructed taking into account ranges of favorability for temperature and relative humidity. Favorability levels were defined considering the available information on pest biology and population dynamics. To characterize the current climatic conditions, information was referenced to the climate normal from 1961 to 1990. Future scenarios for the models were the A2 and B1 gas emission scenarios from the Intergovernmental Panel on Climate Change, focusing on the periods of 2011-2040, 2041-2070, and 2071-2100. The constructed maps showed that, for the reference period, Brazil presents extensive areas with favorable or very favorable conditions for the establishment of red palm mite populations. An increasing favorability was observed for future scenarios when compared with the reference period, indicating that the pest impact will worsen if it is already widely spread and causing damage in the country. Under current and future climate scenarios, most of the favorable and very favorable areas for red palm mite are in northeastern Brazil.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Nabaz R. Khwarahm

Abstract Background The oak tree (Quercus aegilops) comprises ~ 70% of the oak forests in the Kurdistan Region of Iraq (KRI). Besides its ecological importance as the residence for various endemic and migratory species, Q. aegilops forest also has socio-economic values—for example, as fodder for livestock, building material, medicine, charcoal, and firewood. In the KRI, Q. aegilops has been degrading due to anthropogenic threats (e.g., shifting cultivation, land use/land cover changes, civil war, and inadequate forest management policy) and these threats could increase as climate changes. In the KRI and Iraq as a whole, information on current and potential future geographical distributions of Q. aegilops is minimal or not existent. The objectives of this study were to (i) predict the current and future habitat suitability distributions of the species in relation to environmental variables and future climate change scenarios (Representative Concentration Pathway (RCP) 2.6 2070 and RCP8.5 2070); and (ii) determine the most important environmental variables controlling the distribution of the species in the KRI. The objectives were achieved by using the MaxEnt (maximum entropy) algorithm, available records of Q. aegilops, and environmental variables. Results The model demonstrated that, under the RCP2.6 2070 and RCP8.5 2070 climate change scenarios, the distribution ranges of Q. aegilops would be reduced by 3.6% (1849.7 km2) and 3.16% (1627.1 km2), respectively. By contrast, the species ranges would expand by 1.5% (777.0 km2) and 1.7% (848.0 km2), respectively. The distribution of the species was mainly controlled by annual precipitation. Under future climate change scenarios, the centroid of the distribution would shift toward higher altitudes. Conclusions The results suggest (i) a significant suitable habitat range of the species will be lost in the KRI due to climate change by 2070 and (ii) the preference of the species for cooler areas (high altitude) with high annual precipitation. Conservation actions should focus on the mountainous areas (e.g., by establishment of national parks and protected areas) of the KRI as climate changes. These findings provide useful benchmarking guidance for the future investigation of the ecology of the oak forest, and the categorical current and potential habitat suitability maps can effectively be used to improve biodiversity conservation plans and management actions in the KRI and Iraq as a whole.


The Condor ◽  
2021 ◽  
Author(s):  
Natália Stefanini Da Silveira ◽  
Maurício Humberto Vancine ◽  
Alex E Jahn ◽  
Marco Aurélio Pizo ◽  
Thadeu Sobral-Souza

Abstract Bird migration patterns are changing worldwide due to current global climate changes. Addressing the effects of such changes on the migration of birds in South America is particularly challenging because the details about how birds migrate within the Neotropics are generally not well understood. Here, we aim to infer the potential effects of future climate change on breeding and wintering areas of birds that migrate within South America by estimating the size and elevations of their future breeding and wintering areas. We used occurrence data from species distribution databases (VertNet and GBIF), published studies, and eBird for 3 thrush species (Turdidae; Turdus nigriceps, T. subalaris, and T. flavipes) that breed and winter in different regions of South America and built ecological niche models using ensemble forecasting approaches to infer current and future potential distributions throughout the breeding and wintering periods of each species. Our findings point to future shifts in wintering and breeding areas, mainly through elevational and longitudinal changes. Future breeding areas for T. nigriceps, which migrates along the Andes Mountains, will be displaced to the west, while breeding displacements to the east are expected for the other 2 species. An overall loss in the size of future wintering areas was also supported for 2 of the species, especially for T. subalaris, but an increase is anticipated for T. flavipes. Our results suggest that future climate change in South America will require that species shift their breeding and wintering areas to higher elevations in addition to changes in their latitudes and longitude. Our findings are the first to show how future climate change may affect migratory birds in South America throughout the year and suggest that even closely related migratory birds in South America will be affected in different ways, depending on the regions where they breed and overwinter.


Author(s):  
Hevellyn Talissa dos Santos ◽  
Cesar Augusto Marchioro

Abstract The small tomato borer, Neoleucinodes elegantalis (Guenée, 1854) is a multivoltine pest of tomato and other cultivated solanaceous plants. The knowledge on how N. elegantalis respond to temperature may help in the development of pest management strategies, and in the understanding of the effects of climate change on its voltinism. In this context, this study aimed to select models to describe the temperature-dependent development rate of N. elegantalis and apply the best models to evaluate the impacts of climate change on pest voltinism. Voltinism was estimated with the best fit non-linear model and the degree-day approach using future climate change scenarios representing intermediary and high greenhouse gas emission rates. Two out of the six models assessed showed a good fit to the observed data and accurately estimated the thermal thresholds of N. elegantalis. The degree-day and the non-linear model estimated more generations in the warmer regions and fewer generations in the colder areas, but differences of up to 41% between models were recorded mainly in the warmer regions. In general, both models predicted an increase in the voltinism of N. elegantalis in most of the study area, and this increase was more pronounced in the scenarios with high emission of greenhouse gases. The mathematical model (74.8%) and the location (9.8%) were the factors that mostly contributed to the observed variation in pest voltinism. Our findings highlight the impact of climate change on the voltinism of N. elegantalis and indicate that an increase in its population growth is expected in most regions of the study area.


2014 ◽  
Vol 75 (S2) ◽  
pp. 139-154 ◽  
Author(s):  
Shifeng Huang ◽  
Wenbin Zang ◽  
Mei Xu ◽  
Xiaotao Li ◽  
Xuecheng Xie ◽  
...  

2020 ◽  
Vol 8 ◽  
Author(s):  
Pablo Medrano-Vizcaíno ◽  
Patricia Gutiérrez-Salazar

Nasuella olivacea is an endemic mammal from the Andes of Ecuador and Colombia. Due to its rarity, aspects about its natural history, ecology and distribution patterns are not well known, therefore, research is needed to generate knowledge about this carnivore and a first step is studying suitable habitat areas. We performed Ecological Niche Models and applied future climate change scenarios (2.6 and 8.5 RCP) to determine the potential distribution of this mammal in Colombia and Ecuador, with current and future climate change conditions; furthermore, we analysed its distribution along several land covers. We found that N. olivacea is likely to be found in areas where no records have been reported previously; likewise, climate change conditions would increase suitable distribution areas. Concerning land cover, 73.4% of N. olivacea potential distribution was located outside Protected Areas (PA), 46.1% in Forests and 40.3% in Agricultural Lands. These findings highlight the need to further research understudied species, furthering our understanding about distribution trends and responses to changing climatic conditions, as well as informig future PA designing. These are essential tools for supporting wildlife conservation plans, being applicable for rare species whose biology and ecology remain unknown.


2021 ◽  
Author(s):  
Pedro Jiménez-Guerrero ◽  
Patricia Guzmán ◽  
Patricia Tarín-Carrasco ◽  
María Morales-Suarez-Varela

<p>Air pollution has a serious impact on health and this problem will be aggravated under the action of climate change. This climate penalty can play an important role when trying to assess future impacts of air pollution on several pathologies. Among these diseases, the scientific literature is scarce when referring to the influence of atmospheric pollutants on neurodegenerative diseases for future climate change scenarios. Under this framework, this contribution evaluates the incidence of dementia (Alzheimer's disease and vascular dementia) occurring in Europe due to exposure of air pollution (essentially NO<sub>2</sub> and PM2.5) for the present climatic period (1991-2010) and for a future climate change scenario (RCP8.5, 2031-2050). The GEMM methodology has been applied to climatic air pollution simulations using the chemistry/climate regional model WRF-Chem. Present population data were obtained from NASA's Center for Socioeconomic Data and Applications (SEDAC); while future population projections for the year 2050 were derived from the United Nations (UN) Department of Economic and Social Affairs-Population Dynamics.</p><p>Overall, the estimated incidence of Alzheimer's disease and vascular dementia associated to air pollution over Europe is 498,000 [95% confidence interval (95% CI) 348,600-647,400] and 314,000 (95% CI 257,500-401,900) new cases per year, respectively. An important increase in the future incidence is projected (around 72% for both types of dementia) when considering the effect of climate change together with the foreseen changes in the dynamics of population (expected aging of European population). The climate penalty has a limited effect on the total changes of Alzheimer's disease and vascular dementia (approx. 0.5%), since the large increase in new annual cases over southern Europe is offset by the decrease of the incidence associated to these pathologies over more northern countries, favored by an improvement of air pollution caused by the projected enhancement of rainfall.</p>


Sign in / Sign up

Export Citation Format

Share Document