scholarly journals Optimization of the Process Parameters for Micro-Milling Thin-Walled Micro Parts Using Advanced Algorithms

Author(s):  
Peng Wang ◽  
Qingshun Bai ◽  
Kai Cheng ◽  
Liang Zhao ◽  
Hui Ding

Abstract The surface integrity and machining accuracy of thin-walled micro parts are significantly affected by micro-milling parameters mostly because of their weak stiffness. Furthermore, there is still a lack of studies focusing on parameters optimization for the fabrication of thin-walled microscale parts. In this paper, an innovative approach is proposed for the optimization of machining parameters with the objectives of surface quality and dimension accuracy, which integrates the Taguchi method, principal component analysis method (PCA) and the Non-dominated sorting genetic algorithm (NSGA-II). In the study, surface arithmetic average height Sa, surface root mean square height Sq, and 3-D fractal dimension Ds are selected to evaluate surface quality. Then micro-milling experiments are conducted based on the Taguchi method. According to the experimental results, the significance of machining parameters can be determined by range analysis. Besides, regression models for the responses are developed comparatively, and the PCA method is employed for dimension reduction of the optimization objective space. Finally, two combinations of machining parameters with the highest satisfaction are obtained through NSGA-II, and verification experiments are carried out. The results show that the surface quality and dimension accuracy of the thin-walled microscale parts can be simultaneously improved by using the proposed approach.

2014 ◽  
Vol 551 ◽  
pp. 569-573 ◽  
Author(s):  
Shu Feng Sun ◽  
An Chen Yin ◽  
Ping Ping Wang ◽  
Qin Dong Zhang

With the development of the times, micro and small products are needed increasingly. The machining accuracy and surface quality are especially important to micro machining. However, in the micro milling, the size of the burr compared with that of the part is much greater than that of conventional milling. Moreover, it is difficult to remove micro milling burr by conventional deburring methods due to the small part size. The existence of burr will not only affect the match of parts, but also reduce the dimensional accuracy and surface quality of the work piece. Therefore, it is important to control and reduce micro-milling burr. Micro-milling experiments are carried out on the material of copper with micro-milling cutter diameter 0.5 mm. Micro grooves are milled with different cutting process parameters. The burrs generated under different conditions are analyzed using orthogonal test method. When the spindle speed and feed rate are constant, burrs increase with the increasing of cutting depth. Keeping the spindle speed and the depth of cut constant, burrs are generated increasingly with the increase of feed rate. And the decreasing of the spindle speed leads to the increase of burrs if the other parameters are constant. The experimental research provides reference for the burr control of micro-milling based on the optimization cutting process parameters.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 325
Author(s):  
Muslim Mahardika ◽  
Martin Andre Setyawan ◽  
Tutik Sriani ◽  
Norihisa Miki ◽  
Gunawan Setia Prihandana

Titanium is widely used in biomedical components. As a promising advanced manufacturing process, electropolishing (EP) has advantages in polishing the machined surfaces of material that is hard and difficult to cut. This paper presents the fabrication of a titanium microchannel using the EP process. The Taguchi method was adopted to determine the optimal process parameters by which to obtain high surface quality using an L9 orthogonal array. The Pareto analysis of variance was utilized to analyze the three machining process parameters: applied voltage, concentration of ethanol in an electrolyte solution, and machining gap. In vitro experiments were conducted to investigate the fouling effect of blood on the microchannel. The result shows that an applied voltage of 20 V, an ethanol concentration of 20 vol.%, and a machining gap of 10 mm are the optimum machining parameters by which to enhance the surface quality of a titanium microchannel. Under the optimized machining parameters, the surface quality improved from 1.46 to 0.22 μm. Moreover, the adhesion of blood on the surface during the fouling experiment was significantly decreased, thus confirming the effectiveness of the proposed method.


2008 ◽  
Vol 53-54 ◽  
pp. 299-303
Author(s):  
Zong Wei Niu ◽  
Zhi Yong Li ◽  
F.F. Wang ◽  
Dian Zhu Sun

A simulation system was developed to forecast machining quality and optimize grinding parameters for the machining of ceramic die material. The system can forecast the surface quality of machined ceramic die material with high precision, optimize machining parameters and analyze the dominant factors. Based on the process database, the simulation system is applicable to various machining methods. It can help to raise the automaticity for the machining of ceramic die material and develop the farther intelligent system.


2012 ◽  
Vol 59 (2) ◽  
Author(s):  
Syaimak Abdul Shukor

Custom-built Miniature Machine Tools (MMTs) are now becoming more popular with the demand for reduced energy consumption and workshop floor when machining small/medium batch size micro-components. This paper investigates the capability of a custom-built 4-axis MMT through machining an “adapted standard‟ of micro-testpiece. The experiments have been carried out in two different materials: Carbon Steel (AISI 1040) and Titanium Alloyed (TiAl6V4) using solid carbide flat end mill cutters with 0.6mm diameter. From here, the surface quality and geometrical accuracy of the machined testpiece are evaluated and analysed. The investigation has shown that acceptable geometrical accuracies and surface quality of the machined micro-parts can be achieved using the in-house developed MMT. These results show that the use of the custom-made MMT does not hinder the micro-milling process to produce a good and satisfactory surface quality (Ra=0.04-0.07μm) and acceptable geometrical accuracy.


2020 ◽  
Vol 14 ◽  
Author(s):  
Song Yang ◽  
Tie Yin ◽  
Feiyue Wang

Background: Thin-walled parts of aluminum alloy are easy to occur machining deformation duo to the characteristics of thin wall, low rigidity, and complex structure. Objective: To reduce and control the machining deformation, it is necessary to select reasonable machining parameters. Method: The influence of milling parameters on the milling forces, milling temperature, and machining deformation was analyzed through the established model based on ABAQUS. Then, the corresponding empirical formula was obtained by MATLAB, and parameters optimization was carried out as well. Besides, a lot of patents on machining thin-walled parts were studied. Results: The results shown that the prediction error of milling forces is about 15%, and 20% of milling temperature. In this case, the optimized milling parameters are as follows: ap=1 mm, ae=0.1 mm, n=12 000 r/min, and f=400 mm/min. It is of great significance to reduce the machining deformation and improve the machining quality of thin-walled parts.


2013 ◽  
Vol 567 ◽  
pp. 67-72 ◽  
Author(s):  
Zhi Yong Li ◽  
Zong Wei Niu ◽  
Li Li

Because the process of blade in electrochemical machining(EMC) can be effected by many factors, such as blade shapes, machining electrical field, electrolyte fluid field and anode electrochemical dissolution, different ECM machining parameters maybe result in great affections on blade machining accuracy. Regard some type of aero-engine blade as research object, a great deal of ECM machining parameter combination which probably result in machining failure can be eliminated based on BP neural network firstly. Furthermore, the optimized ECM machining parameter combination has been discovered. To verify the validity of the optimized ECM parameter combination, a serial of machining experiments have been conducted on an industrial scale ECM machine, and the experiment results demonstrates that the optimized ECM parameter combination not only can satisfy the manufacturing requirements of blade fully but has excellent ECM process stability.


2014 ◽  
Vol 800-801 ◽  
pp. 167-174
Author(s):  
Jing Yu Liu ◽  
Liang Li ◽  
Ning He ◽  
Xian Wu ◽  
Zhong Bo Zhan ◽  
...  

Micro cutting offers good potentialities in order to manufacture small and medium lot sizes of micro-parts with arbitrary geometry at an economically reasonable expense. This technology has been widely used in many fields, especially in aerospace field and biological medicine. The slit grating which is used for X-ray telescope is difficult to machine because of the small critical dimensions, large material removal rates and the high requirement of machining quality. In this paper, two methods are describes to manufacture the slit grating which include micro-milling and flying-cutting. The focus is on the design of micro tool, optimization of machining parameters, the comparison of machining efficiency and precision of slit grating by micro-milling and flying-cutting.


2006 ◽  
Vol 532-533 ◽  
pp. 488-491 ◽  
Author(s):  
Ju Long Yuan ◽  
Bing Hai Lv ◽  
Zhao Zhong Zhou ◽  
Bao Chun Tao

The surface quality is a critical factor affecting the performance and reliability of advanced ceramics. This paper focuses on the application of Taguchi method for optimization of advanced ceramics lapping process parameters to obtain the best finish. An optimization experiment for lapping silicon wafer with Al2O3 was designed by Taguchi method. Surface roughness Ra and Rt are considered as criteria for optimization. Influence of parameters involving load, speed, and slurry concentration for a given workmaterial with given abrasive (material and size) are discussed, and the optimum lapping conditions are figured out. Compared with single parameter experimental results, it illustrates that the experiment design based on Taguchi method can successfully applied to determine the optimum processing conditions for advanced ceramics lapping process.


2016 ◽  
Vol 836-837 ◽  
pp. 296-303
Author(s):  
Dong Sheng Liu ◽  
Ming Luo ◽  
Ding Hua Zhang

Thin-walled workpieces are widely used in the aerospace manufacturing industry in order to reduce the weight of structure and improve working efficiency. However, vibration is easy to occur in machining of thin-walled structures due to its low stiffness. Machining vibration will result in lower machining accuracy as well as machining efficiency. In order to reduce the machining vibrations of thin-wall workpieces, commonly used method is to select proper machining parameters according to the chatter stability lobes, which is generated according to the machining system parameters. However, this method requires exact system parameters to be determined, which are always changing in the machining process. In this paper, a special designed fixture with damping materials for the thin-walled workpiece is presented based on the machining vibration control theory, and analysis of the effect of vibration suppressing is obtained through the contrast of vibration tests of milling the thin-walled workpiece on the damping clamp. The damping material is used to consume vibration energy and provide support for thin-walled structure. Machining test was carried out for thin-walled structure machining to validate the effectiveness of the proposed method.


2007 ◽  
Vol 359-360 ◽  
pp. 158-161 ◽  
Author(s):  
Xiao Feng Zheng ◽  
Ju Long Yuan ◽  
Dong Hui Wen ◽  
Fei Yan Lou

9Cr18 is a type of martensite stainless steel. It has high hardness, chemical stability, fine anticorrosion, wearable and quench stability. It has been used in different areas with high-anticorrosion and high polishing surface as mirror. So it requires for the high level surface quality after lapping and polishing. In this paper, the surface quality (surface roughness and flatness) of 9Cr18 is discussed with lapping parameters which include velocity, load and time distribution of two lapping steps(rough lapping and Ultra-precision lapping). In order to optimize those parameters, an optimization experiment for lapping 9Cr18 with Al2O3 was designed by Taguchi method. Finally, the optimum condition of each factor can be determined that speed: 80rpm, load:3.0kPa, and time distribution: rough lapping time=15min, Ultra-precision lapping time=45min are the optimum conditions for both Ra and Wt.


Sign in / Sign up

Export Citation Format

Share Document