Research on Micro Machining of Slit Grating

2014 ◽  
Vol 800-801 ◽  
pp. 167-174
Author(s):  
Jing Yu Liu ◽  
Liang Li ◽  
Ning He ◽  
Xian Wu ◽  
Zhong Bo Zhan ◽  
...  

Micro cutting offers good potentialities in order to manufacture small and medium lot sizes of micro-parts with arbitrary geometry at an economically reasonable expense. This technology has been widely used in many fields, especially in aerospace field and biological medicine. The slit grating which is used for X-ray telescope is difficult to machine because of the small critical dimensions, large material removal rates and the high requirement of machining quality. In this paper, two methods are describes to manufacture the slit grating which include micro-milling and flying-cutting. The focus is on the design of micro tool, optimization of machining parameters, the comparison of machining efficiency and precision of slit grating by micro-milling and flying-cutting.

2022 ◽  
Author(s):  
Peng Wang ◽  
Qingshun Bai ◽  
Kai Cheng ◽  
Liang Zhao ◽  
Hui Ding

Abstract The surface integrity and machining accuracy of thin-walled micro parts are significantly affected by micro-milling parameters mostly because of their weak stiffness. Furthermore, there is still a lack of studies focusing on parameters optimization for the fabrication of thin-walled microscale parts. In this paper, an innovative approach is proposed for the optimization of machining parameters with the objectives of surface quality and dimension accuracy, which integrates the Taguchi method, principal component analysis method (PCA) and the Non-dominated sorting genetic algorithm (NSGA-II). In the study, surface arithmetic average height Sa, surface root mean square height Sq, and 3-D fractal dimension Ds are selected to evaluate surface quality. Then micro-milling experiments are conducted based on the Taguchi method. According to the experimental results, the significance of machining parameters can be determined by range analysis. Besides, regression models for the responses are developed comparatively, and the PCA method is employed for dimension reduction of the optimization objective space. Finally, two combinations of machining parameters with the highest satisfaction are obtained through NSGA-II, and verification experiments are carried out. The results show that the surface quality and dimension accuracy of the thin-walled microscale parts can be simultaneously improved by using the proposed approach.


2010 ◽  
Vol 154-155 ◽  
pp. 310-313
Author(s):  
Xue Feng Bi ◽  
Jin Sheng Wang ◽  
Jia Shun Shi ◽  
Ya Dong Gong

Micromold manufacturing technology is very important for the mass production of micro parts. In this paper, modeling of micromold is established in 3D software firstly. The 3D modeling is input into machining simulation software Master CAM to simulate machining process. The machining parameters and cutting tool path are optimized in machining simulation. Machining G code of micromold obtained from post-process program of Master CAM is input into HMI system of Micro Machine Tool (MMT), and hence the micromold will be machined precisely in MMT.


2014 ◽  
Vol 30 (6) ◽  
pp. 667-678 ◽  
Author(s):  
S. Kouravand ◽  
B. M. Imani ◽  
J. Ni

AbstractMicro milling operation is a fabrication process to create 3D parts from tens of micrometers to a few millimeters in size using a tool with diameter less than 1mm. Micro groove is one of the common features observed in the micro parts. The surface roughness of micro grooves plays an important role in their performance. Since most of the finishing processes could not be easily performed on the micro grooves, it is of extreme importance to find a relationship between micro milling parameters and the surface roughness profile. In this paper, in order to anticipate the profile and surface roughness of the groove floor a model is proposed based on the kinematic of cutting process and tool geometry. The effects of minimum chip thickness, elastic recovery, size effect and tool deflection are included in the model. Relationship between position of points on the floor surface of groove and kinematics of cutting process are derived. In next step, simulations of proposed model are performed in the ACIS environment. Finally, using the DOE method surface roughness is investigated stochastically. The simulated and measured surface roughnesses are compared together that confirm the validity of proposed model.


2012 ◽  
Vol 59 (2) ◽  
Author(s):  
Syaimak Abdul Shukor

Custom-built Miniature Machine Tools (MMTs) are now becoming more popular with the demand for reduced energy consumption and workshop floor when machining small/medium batch size micro-components. This paper investigates the capability of a custom-built 4-axis MMT through machining an “adapted standard‟ of micro-testpiece. The experiments have been carried out in two different materials: Carbon Steel (AISI 1040) and Titanium Alloyed (TiAl6V4) using solid carbide flat end mill cutters with 0.6mm diameter. From here, the surface quality and geometrical accuracy of the machined testpiece are evaluated and analysed. The investigation has shown that acceptable geometrical accuracies and surface quality of the machined micro-parts can be achieved using the in-house developed MMT. These results show that the use of the custom-made MMT does not hinder the micro-milling process to produce a good and satisfactory surface quality (Ra=0.04-0.07μm) and acceptable geometrical accuracy.


2017 ◽  
Vol 261 ◽  
pp. 69-76
Author(s):  
Amin Dadgari ◽  
De Hong Huo ◽  
David Swailes

This paper investigates different machining toolpath strategies on machining efficiency and accuracy in the micro milling of linear and circular micro geometric features. Although micro milling includes many characteristics of the conventional machining process, detrimental size effect in downscaling of the process can lead to excessive tool wear and machining instability, which would, in turn, affects the geometrical accuracy and surface roughness. Most of the research in micro milling reported in literature focused on optimising specific machining parameters, such as feed rate and depth of cut, to achieve lower cutting force, better surface roughness, and higher material removal rate. However, there was little attention given to the suitability and effect of machining tool path strategies. In this research, a tool path optimisation method with respect to surface roughness and dimensional accuracy is proposed and tested experimentally. Various toolpath strategies, including lace(0°), lace(45°), lace(90°), concentric and waveform in producing linear and circular micro geometric features were compared and analysed. Experimental results show that the most common used strategies lace(0°) and concentric reported in the literature have provided the least satisfactory machining performance, while waveform toolpath provides the best balance of machining performance for both linear and circular geometries. Hence, at process planning stage it is critical to assign a suitable machining toolpath strategy to geometries accordingly. The paper concludes that an optimal choice of machining strategies in process planning is as important as balancing machining parameters to achieve desired machining performance.


2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
Anish Kumar ◽  
Vinod Kumar ◽  
Jatinder Kumar

This research work mainly focused on experimental investigation on material transfer mechanism in WEDM of pure titanium. The effects of machining parameters such as pulse on time, pulse off time, peak current, spark gap voltage, wire feed, and wire tension on the material removal rate (MRR), overcut, and surface roughness for pure titanium in WEDM process were explored. The selected machined samples were analyzed using energy dispersive X-ray analysis, scanning electron microscope, and X-ray diffraction techniques. It was observed from the results that a significant material transfer occurred from the dielectric, as well as tool, electrode on the work surface either in free form and/or in compound form. Also the multiresponse optimization of process parameters was done using desirability approach. The predictions from this model were validated by conducting experiments.


2013 ◽  
Vol 28 (S2) ◽  
pp. S315-S326 ◽  
Author(s):  
Ravinder Singh Joshi ◽  
Harpreet Singh

In present investigation, effect of modulation and machining parameters on deformation level of the chips produced during modulation assisted machining (MAM) has been studied. It is shown that disruption in tool-chip contact during modulation assisted machining helps in the formation of discrete chips. Size and shape of the particles produced in MAM can be controlled by varying modulation and machining conditions. Particulates of different shapes and sizes ranging from 100 µm to 5 mm with an aspect ratio of ~10 were produced using MAM. The morphology of the particulates produced was characterized by scanning electron microscope (SEM). Deformation in chip particulates was investigated using X-Ray diffraction. The crystallite size and internal strain in particulates were evaluated using Scherrer and Williamson-Hall methods respectively. The crystallite size of the particulates was found to decrease with decrease in their size, whereas internal strain in particulates was observed to increase with decrease in their size. Furthermore, the length of particulates was observed to decrease with an increase in the ratio of frequency of modulation (fm) to frequency of workpiece rotation (fw). However, the corresponding change in microstrain and crystallite size was insignificant with change in this ratio.


2007 ◽  
Vol 364-366 ◽  
pp. 389-393
Author(s):  
Bo Wang ◽  
Ju Xiang Wang ◽  
Ying Chun Liang

To manufacture the micro parts or micro structures effectively and precisely, a high precision 3-axis micro milling machine is built. All the three axis are driven by linear piezoelectric ultrasonic motors and the slides are supported by cross-roller guide. Investigations are firstly made to analyze the impact of the non-linear characteristics in the servo mechanism on the performance of the servo system. To achieve the positioning and tracking accuracy at sub-micrometer and micrometer level respectively, on one hand, a optical linear encoder with the resolution of 50nm is applied to close the control loop and a high performance DSP based motion control card is used to carried out the reference command. On the other hand, sophisticated control and compensation strategies are also implemented to overcome the non-linear characteristics in the servo system. Positioning and tracking experiments show that, with this well-tuned control system, the positioning and tracking accuracy are ±0.5μm and ±2.4μm respectively. Using this machine, a micro part with 5μm thin-walled structure is machined successfully.


Author(s):  
Xinyu Liu ◽  
Weihang Zhu ◽  
Victor Zaloom

This paper presents a multi-objective optimization study for the micro-milling process with adaptive data modeling based on the process simulation. A micro-milling machining process model was developed and verified through our previous study. Based on the model, a set of simulation data was generated from a factorial design. The data was converted into a surrogate model with adaptive data modeling method. The model has three input variables: axial depth of cut, feed rate and spindle speed. It has two conflictive objectives: minimization of surface location error (which affects surface accuracy) and minimization of total tooling cost. The surrogate model is used in a multi-objective optimization study to obtain the Pareto optimal sets of machining parameters. The visual display of the non-dominated solution frontier allows an engineer to select a preferred machining parameter in order to get a lowest cost solution given the requirement from tolerance and accuracy. The contribution of this study is to provide a streamlined methodology to identify the preferred best machining parameters for micro-milling.


Sign in / Sign up

Export Citation Format

Share Document