scholarly journals Assessing the growth response of Vitis vinifera L. cv. Xynisteri, Maratheftiko, Shiraz and Sauvignon Blanc to different irrigation regimes.

Author(s):  
Alexander Willem Copper ◽  
Stefanos Koundouras ◽  
Susan E. P. Bastian ◽  
Trent Johnson ◽  
Cassandra Collins

Abstract The world’s changing climate is placing great pressure on the resources for sustainable viticulture. With this, it has become necessary to investigate grape varieties that are well adapted to hot climates. The aims of this study were to (1) assess the response of Xynisteri to different irrigation regimes, and (2) compare the performance of Xynisteri, Maratheftiko, Shiraz and Sauvignon Blanc grown in pots with different irrigation regimes. Trial one was established in a commercial Xynisteri vineyard in Cyprus under three different irrigation regimes - full, 50% and no irrigation in 2019. Trial two compared three irrigation regimes - full, 50% and 25% in a potted trial of Xynisteri and Sauvignon Blanc conducted in Cyprus in 2019. Trial three was a potted trial of Xynisteri, Sauvignon Blanc, Maratheftiko and Shiraz with the same three irrigation regimes conducted in Australia in 2020/21. Vine performance and physiology measurements were taken in both trials. Fruit composition analysis, yield (field trial only), shoot, trunk and root mass measurements were performed at the end of the season. Few differences between measures were found between irrigation regimes in the field trial. Fruit composition analysis revealed fructose to be lowest in the full irrigation group compared to deficit and no irrigation treatments. The potted trial in 2019 demonstrated that for all three irrigation regimes, Xynisteri had higher stem water potential, stomatal conductance and chlorophyll content than Sauvignon Blanc. Xynisteri produced greater end of season root, shoot and leaf mass than Sauvignon Blanc under all irrigation regimes. In 2020/21, Xynisteri had greater end of season root, shoot and leaf mass than Maratheftiko and Sauvignon Blanc with Shiraz the lowest. Few significant differences in stem water potential were observed in the early stages of the trial. However, toward the end of the trial and with reduced irrigation, Xynisteri and Maratheftiko had higher stem water potential than Shiraz and Sauvignon Blanc. Xynisteri had higher stomatal conductance and chlorophyll content than Maratheftiko and both were higher than Sauvignon Blanc and Shiraz. These results indicate that Xynisteri in particular may possess better cultivar specific growth traits than Shiraz and Sauvignon Blanc when grown under the same environmental conditions and in turn may be a more appropriate choice in areas where water is limited.

OENO One ◽  
2020 ◽  
Vol 54 (4) ◽  
pp. 935-954
Author(s):  
Alexander Willem Copper ◽  
Cassandra Collins ◽  
Susan Bastian ◽  
Trent Johnson ◽  
Stefanos Koundouras ◽  
...  

Aim: The aims of this study were to (1) formulate a baseline understanding of the performance of the indigenous Cypriot white grape Xynisteri and the red grape Maratheftiko (Vitis vinifera L.), and (2) compare these varieties to Shiraz and Sauvignon blanc grown in a Cypriot vineyard.Materials and results: The investigation involved multiple dry grown vineyards from the Krasochoria region of Lemesos, Cyprus, during the 2017, 2018 and 2019 vintages. Vine performance measurements, including midday stem water potential, stomatal conductance, chlorophyll content, stomata density, vine phenology and vegetative and reproductive measurements, were taken at flowering, veraison and pre-harvest. Xynisteri had the greatest stomatal density, more shoots, more leaves, heavier bunches, greater yield, higher leaf water potential at harvest, and a stomatal conductance equal to Maratheftiko, but greater than that of both Shiraz and Sauvignon blanc. Maratheftiko had the longest shoots, largest shoot diameter and the greatest chlorophyll content out of all four varieties.Conclusions: This study identified the ability of the indigenous Cypriot grape varieties, Xynisteri and Maratheftiko, to better tolerate hot and dry conditions when compared to more commonly cultivated varieties grown in the same environmental conditions.Significance and impact of the study: The changing climate of wine growing regions worldwide is placing great pressure on the resources for sustainable viticulture. Many vineyards in hot climate zones base their businesses on European grape varieties traditionally grown in regions with abundant water resources. It is therefore necessary for the global wine industry to investigate grape varieties that are indigenous to hot climates. The eastern Mediterranean island of Cyprus is one such place, with more than 10 indigenous grape varieties that grow well in a hot climate without irrigation. Consumer studies have demonstrated that wines made from these Cypriot varieties are equally, if not more, acceptable than wines made from more traditional European grapes; therefore, the potential for their use in other hot wine growing regions is promising.


1995 ◽  
Vol 120 (4) ◽  
pp. 577-582 ◽  
Author(s):  
Amos Naor ◽  
Isaac Klein ◽  
Israel Doron

The sensitivity of leaf (ψleaf) and stem (ψstem) water potential and stomatal conductance (gs) to soil moisture availability in apple (Malus domestics Borkh.) trees and their correlation with yield components were studied in a field experiment. Two drip irrigation treatments, 440 mm (H) and 210 mm (L), were applied to a `Golden Delicious' apple orchard during cell enlargement stage (55-173 days after full bloom). Data collected included ψstem, y leaf, gs, and soil water potential at 25 (ψsoil-25) and 50 cm (ψsoil-50). No differences in midday ψleaf's were found between irrigation treatments. Stem water potential was higher in the H treatment than in the L treatment in diurnal measurements, and at midday throughout the season. Stomatal conductance of the H treatment was higher than the L treatment throughout the day. Stomatal conductance between 0930 and 1530 hr were highly correlated with ψstem. The H treatment increased the percentage of fruit >65 mm, and increased the proportion of earlier harvested fruit reaching marketable size compared to the L treatment. Fruit size in the first harvest and the total yield were highly correlated with ψstem. The degree of correlation between plant water stress indicators and yield component decreased in the following order: ψstem>ψsoil-25,>ψsoil-50>ψleaf. The data suggest that midday ψstem may serve as a preferable plant water stress indicator with respect to fruit size.


2021 ◽  
Author(s):  
Erica Casagrande Biasuz ◽  
Lee Kalcsits

Dwarfing rootstocks are used to control tree vigor allowing for increased densities that increase apple production. Although there is considerable variation among rootstocks in dwarfing capacity, the mechanisms by which rootstocks affect vigor in apple scions remains unclear. Here, Honeycrisp apple growth and water relations were compared among three rootstocks; M-9 as the industry standard and two less studied Geneva series rootstocks; G.87 and G. 814 in Washington, USA. Trees were acquired from a commercial nursery and planted in 2017. In 2018 and 2019, scion physiological, isotopic and morphological traits were measured to better understand the link between rootstock-driven vigor and physiological traits. Rootstock affected scion shoot growth (P <0.001), stomatal conductance (P< 0.01) and stem water potential (P <0.001). Rootstocks with low vegetative vigor like M.9 also had lower stomatal conductance and enriched leaf δ13C and δ18O isotope composition. Plant growth was positively correlated with stomatal conductance and stem water potential. Rootstocks also affected plant water status and net gas exchange. Here, we report an association between rootstock-induced vigor and scion physiological traits such as gas exchange, stem water potential, and leaf carbon and oxygen isotope composition. This research has implications for the understanding of the mechanisms of dwarfing by rootstocks in apple.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 857B-857
Author(s):  
Rashid Al-Yahyai* ◽  
Bruce Schaffer ◽  
Frederick S. Davies

The effect of soil water depletion on plant water potential and leaf gas exchange of carambola (Averrhoa carambola L. cv. Arkin) in Krome very gravelly loam soil was studied in an orchard and in containers in the field and in a greenhouse. The rate of soil water depletion was determined by continuously monitoring soil water content with multi-sensor capacitance probes. Stem water potential and leaf gas exchange of carambola in containers were reduced when the soil water depletion level fell below 50% (where field capacity = 100%). Although there was a decrease in the rate of soil water depletion in the orchard as the soil dried, soil water depletion did not go below an average of 70%. This was presumably due to sufficient rainfall and capillary movement of water in the soil. Therefore, soil water content did not decline sufficiently to affect leaf gas exchange and leaf and stem water potential of orchard trees. A decline in soil water depletion below 40% resulted in a concomitant decline in stem water potential of the container trees in the field and greenhouse to below -1.0 MPa. Stomatal conductance, net CO2 assimilation, and transpiration declined significantly when stem water potential was below -1.0 MPa. The reduction of net CO2 assimilation and transpiration was proportional to the decline in stomatal conductance of container trees in the field and greenhouse. Thus, soil water depletion in Krome very gravelly loam soil must be less than 50% before water potential or leaf gas exchange of carambola is affected. Based on these results, irrigation scheduling should be based on physiological variables such as stem water potential and stomatal conductance or the amount rather than the rate of soil water depletion.


2019 ◽  
Vol 37 (4) ◽  
pp. 461-467 ◽  
Author(s):  
L. Ahumada-Orellana ◽  
S. Ortega-Farías ◽  
C. Poblete-Echeverría ◽  
P. S. Searles

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3596 ◽  
Author(s):  
Marcos Carrasco-Benavides ◽  
Javiera Antunez-Quilobrán ◽  
Antonella Baffico-Hernández ◽  
Carlos Ávila-Sánchez ◽  
Samuel Ortega-Farías ◽  
...  

The midday stem water potential (Ψs) and stomatal conductance (gs) have been traditionally used to monitor the water status of cherry trees (Prunus avium L.). Due to the complexity of direct measurement, the use of infrared thermography has been proposed as an alternative. This study compares Ψs and gs against crop water stress indexes (CWSI) calculated from thermal infrared (TIR) data from high-resolution (HR) and low-resolution (LR) cameras for two cherry tree cultivars: ‘Regina’ and ‘Sweetheart’. For this purpose, a water stress–recovery cycle experiment was carried out at the post-harvest period in a commercial drip-irrigated cherry tree orchard under three irrigation treatments based on Ψs levels. The water status of trees was measured weekly using Ψs, gs, and compared to CWSIs, computed from both thermal cameras. Results showed that the accuracy in the estimation of CWSIs was not statistically significant when comparing both cameras for the representation of Ψs and gs in both cultivars. The performance of all evaluated physiological indicators presented similar trends for both cultivars, and the averaged differences between CWSI’s from both cameras were 11 ± 0.27%. However, these CWSI’s were not able to detect differences among irrigation treatments as compared to Ψs and gs.


Sign in / Sign up

Export Citation Format

Share Document