scholarly journals Traveling 10-day Waves at Mid-latitudes in the Troposphere and Lower Stratosphere Revealed by Radiosonde Observations and MERRA-2 Data in 2020

Author(s):  
Chunming Huang ◽  
Lingyun Yang ◽  
Shaodong Zhang ◽  
Kaiming Huang ◽  
Yun Gong ◽  
...  

Abstract Although the characteristics of the traveling 10-day waves (10DWs) above the middle stratosphere have been well explored, little research has been performed on the counterpart in the troposphere and lower stratosphere (TLS). In the present study, we use radiosonde observations and MERRA-2 data in 2020 to characterize traveling 10DWs in mid-latitudes in the TLS. Single-site observations in both hemispheres show that strong 10DW activities are always accompanied by strong eastward jets (10-13 km). MERRA-2 data indicates that in the troposphere the eastward-propagating modes with larger wavenumbers, i.e., E3, E4, E5 and E6 are dominant. While in the lower stratosphere the eastward- and westward-propagating modes with small zonal wavenumbers e.g., 1 and 2, are dominant. Further research on E3, E4, E5 and E6 modes in the troposphere of both hemispheres shows that all the wave activities are positively correlated to the background zonal wind. The refractive index squared reveal that a strong eastward jet is suitable for these four modes to propagate. However, just above the jet, the eastward wind decreases with altitude, and a thick evanescence region emerges above 15 km. E3, E4, E5 and E6 10DWs cannot propagate upward across the tropopause; as such this can explain why these four modes are weak or even indiscernible in the stratosphere and above. In the troposphere, E5 10DW at 32°S is the most dominant mode in 2020. A case study of the anomalously strong E5 10DW activity on May 12, 2020 indicates that the wave amplification resulted from the upward and equatorward transmission of wave energy flows. Moreover, the tropopause and equatorial region can prevent the propagations of wave energy flows of E5 10DW.

2018 ◽  
Vol 36 (2) ◽  
pp. 381-404 ◽  
Author(s):  
Abdoulwahab Mohamed Toihir ◽  
Thierry Portafaix ◽  
Venkataraman Sivakumar ◽  
Hassan Bencherif ◽  
Andréa Pazmiño ◽  
...  

Abstract. Long-term variability in ozone trends was assessed over eight Southern Hemisphere tropical and subtropical sites (Natal, Nairobi, Ascension Island, Java, Samoa, Fiji, Reunion and Irene), using total column ozone data (TCO) and vertical ozone profiles (altitude range 15–30 km) recorded during the period January 1998–December 2012. The TCO datasets were constructed by combination of satellite data (OMI and TOMS) and ground-based observations recorded using Dobson and SAOZ spectrometers. Vertical ozone profiles were obtained from balloon-sonde experiments which were operated within the framework of the SHADOZ network. The analysis in this study was performed using the Trend-Run model. This is a multivariate regression model based on the principle of separating the variations of ozone time series into a sum of several forcings (annual and semi-annual oscillations, QBO (Quasi-Biennial Oscillation), ENSO, 11-year solar cycle) that account for most of its variability. The trend value is calculated based on the slope of a normalized linear function which is one of the forcing parameters included in the model. Three regions were defined as follows: equatorial (0–10∘ S), tropical (10–20∘ S) and subtropical (20–30∘ S). Results obtained indicate that ozone variability is dominated by seasonal and quasi-biennial oscillations. The ENSO contribution is observed to be significant in the tropical lower stratosphere and especially over the Pacific sites (Samoa and Java). The annual cycle of ozone is observed to be the most dominant mode of variability for all the sites and presents a meridional signature with a maximum over the subtropics, while semi-annual and quasi-biannual ozone modes are more apparent over the equatorial region, and their magnitude decreases southward. The ozone variation mode linked to the QBO signal is observed between altitudes of 20 and 28 km. Over the equatorial zone there is a strong signal at ∼26 km, where 58 % ±2 % of total ozone variability is explained by the effect of QBO. Annual ozone oscillations are more apparent at two different altitude ranges (below 24 km and in the 27–30 km altitude band) over the tropical and subtropical regions, while the semi-annual oscillations are more significant over the 27–30 km altitude range in the tropical and equatorial regions. The estimated trend in TCO is positive and not significant and corresponds to a variation of ∼1.34±0.50 % decade−1 (averaged over the three regions). The trend estimated within the equatorial region (0–15∘ S) is less than 1 % per decade, while it is assessed at more than 1.5 % decade−1 for all the sites located southward of 17∘ S. With regard to the vertical distribution of trend estimates, a positive trend in ozone concentration is obtained in the 22–30 km altitude range, while a delay in ozone improvement is apparent in the UT–LS (upper troposphere–lower stratosphere) below 22 km. This is especially noticeable at approximately 19 km, where a negative value is observed in the tropical regions.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 801
Author(s):  
Gianluca Valenti ◽  
Aldo Bischi ◽  
Stefano Campanari ◽  
Paolo Silva ◽  
Antonino Ravidà ◽  
...  

Stirling units are a viable option for micro-cogeneration applications, but they operate often with multiple daily startups and shutdowns due to the variability of load profiles. This work focused on the experimental and numerical study of a small-size commercial Stirling unit when subjected to cycling operations. First, experimental data about energy flows and emissions were collected during on–off operations. Second, these data were utilized to tune an in-house code for the economic optimization of cogeneration plant scheduling. Lastly, the tuned code was applied to a case study of a residential flat in Northern Italy during a typical winter day to investigate the optimal scheduling of the Stirling unit equipped with a thermal storage tank of diverse sizes. Experimentally, the Stirling unit showed an integrated electric efficiency of 8.9% (8.0%) and thermal efficiency of 91.0% (82.2%), referred to as the fuel lower and, between parenthesis, higher heating value during the on–off cycling test, while emissions showed peaks in NOx and CO up to 100 ppm but shorter than a minute. Numerically, predictions indicated that considering the on–off effects, the optimized operating strategy led to a great reduction of daily startups, with a number lower than 10 per day due to an optimal thermal storage size of 4 kWh. Ultimately, the primary energy saving was 12% and the daily operational cost was 2.9 €/day.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jiali Luo ◽  
Jiayao Song ◽  
Hongying Tian ◽  
Lei Liu ◽  
Xinlei Liang

We use ERA-Interim reanalysis, MLS observations, and a trajectory model to examine the chemical transport and tracers distribution in the Upper Troposphere and Lower Stratosphere (UTLS) associated with an east-west oscillation case of the anticyclone in 2016. The results show that the spatial distribution of water vapor (H2O) was more consistent with the location of the anticyclone than carbon monoxide (CO) at 100 hPa, and an independent relative high concentration center was only found in H2O field. At 215 hPa, although the anticyclone center also migrated from the Tibetan Mode (TM) to the Iranian Mode (IM), the relative high concentration centers of both tracers were always colocated with regions where upward motion was strong in the UTLS. When the anticyclone migrated from the TM, air within the anticyclone over Tibetan Plateau may transport both westward and eastward but was always within the UTLS. The relative high concentration of tropospheric tracers within the anticyclone in the IM was from the east and transported by the westward propagation of the anticyclone rather than being lifted from surface directly. Air within the relative high geopotential height centers over Western Pacific was partly from the main anticyclone and partly from lower levels.


2013 ◽  
Vol 13 (15) ◽  
pp. 7813-7824 ◽  
Author(s):  
R. L. Gattinger ◽  
E. Kyrölä ◽  
C. D. Boone ◽  
W. F. J. Evans ◽  
K. A. Walker ◽  
...  

Abstract. Observations of the mesospheric semi-annual oscillation (MSAO) in the equatorial region have been reported dating back several decades. Seasonal variations in both species densities and airglow emissions are well documented. The extensive observations available offer an excellent case study for comparison with model simulations. A broad range of MSAO measurements is summarised with emphasis on the 80–100 km region. The objective here is not to address directly the complicated driving forces of the MSAO, but rather to employ a combination of observations and model simulations to estimate the limits of some of the underlying dynamical processes. Photochemical model simulations are included for near-equinox and near-solstice conditions, the two times with notable differences in the observed MSAO parameters. Diurnal tides are incorporated in the model to facilitate comparisons of observations made at different local times. The roles of water vapour as the "driver" species and ozone as the "response" species are examined to test for consistency between the model results and observations. The simulations suggest the interactions between vertical eddy diffusion and background vertical advection play a significant role in the MSAO phenomenon. Further, the simulations imply there are rigid limits on vertical advection rates and eddy diffusion rates. For August at the Equator, 90 km altitude, the derived eddy diffusion rate is approximately 1 × 106 cm2 s−1 and the vertical advection is upwards at 0.8 cm s−1. For April the corresponding values are 4 × 105 cm2 s−1 and 0.1 cm s−1. These results from the current 1-D model simulations will need to be verified by a full 3-D simulation. Exactly how vertical advection and eddy diffusion are related to gravity wave momentum as discussed by Dunkerton (1982) three decades ago remains to be addressed.


2012 ◽  
Vol 30 (10) ◽  
pp. 1463-1477 ◽  
Author(s):  
R. Wang ◽  
S. D. Zhang ◽  
H. G. Yang ◽  
K. M. Huang

Abstract. The activities of mid-latitude planetary waves (PWs) in the troposphere and lower stratosphere (TLS) are presented by using the radiosonde data from 2000 to 2004 over four American stations (Miramar Nas, 32.9° N, 117.2° W; Santa Teresa, 31.9° N, 106.7° W; Fort Worth, 32.8° N, 97.3° W; and Birmingham, 33.1° N, 86.7° W) and one Chinese station (Wuhan, 30.5° N, 114.4° E). Statistically, strong PWs mainly appear around subtropical jet stream in the troposphere and lower stratosphere. In the troposphere, the activities of the mid-latitude PWs are strong around the centre of the subtropical jet stream in winter and become small near the tropopause, which indicates that the subtropical jet stream may strengthen the propagation of PWs or even be one of the PW excitation sources. Among the three disturbance components of temperature, zonal and meridional winds, PWs at Wuhan are stronger in the temperature component, but weaker in the zonal wind component than at the other four American stations. While in the meridional wind component, the strengths of PW spectral amplitudes at the four American stations decrease from west to east, and their amplitudes are all larger than that of Wuhan. However, the PWs are much weaker in the stratosphere and only the lower frequency parts remain. The amplitudes of the PWs in the stratosphere increase with height and are strong in winter with the zonal wind component being the strongest. Using the refractive index, we found that whether the PWs could propagate upward to the stratosphere depends on the thickness of the tropopause reflection layer. In the case study of the 2000/2001 winter, it is observed that the quasi 16-day wave in the troposphere is a quasi standing wave in the vertical direction and propagates upward slowly with vertical wavelength greater than 24 km in the meridional component. It propagates eastward with the zonal numbers between 5 and 8, and the quasi 16-day wave at Wuhan is probably the same quasi 16-day wave at the three American stations (Miramar Nas, Santa Teresa and Fort Worth), which propagates steadily along the latitude. The quasi 16-day wave in the stratosphere is also a standing wave with vertical wavelength larger than 10 km in the zonal wind component, and it is westward with the zonal number 1–2. However, the quasi 16-day wave in the stratosphere may not come from the troposphere because of the different concurrent times, propagation directions and velocities. By using the global dataset of NCEP/NCAR reanalysis data, the zonal propagation parameters of 16-day waves in the troposphere and stratosphere are calculated. It is found that the tropospheric 16-day wave propagates eastward with the zonal number 6, while the stratospheric 16-day wave propagates westward with the zonal number 2, which matches well with the results of radiosonde data.


2015 ◽  
Vol 42 (13) ◽  
pp. 5452-5459 ◽  
Author(s):  
Lonneke Goddijn-Murphy ◽  
Belén Martín Míguez ◽  
Jason McIlvenny ◽  
Philippe Gleizon

2021 ◽  
Author(s):  
Meike Rotermund ◽  
Vera Bense ◽  
Martyn Chipperfield ◽  
Andreas Engel ◽  
Jens-Uwe Grooß ◽  
...  

<p>We report on measurements of total bromine (Br<sup>tot</sup>) in the upper troposphere and lower stratosphere (UTLS) taken from the German High Altitude and LOng range research aircraft (HALO) over the North Atlantic, Norwegian Sea and north-western Europe in September/ October 2017 during the WISE (Wave-driven ISentropic Exchange) research campaign. Br<sup>tot</sup> is calculated from measured total organic bromine (Br<sup>org</sup>) (i.e., the sum of bromine contained in CH<sub>3</sub>Br, the halons and the major very short-lived brominated substances) added to inorganic bromine (Br<sub>y</sub><sup>inorg</sup>), evaluated from measured BrO and photochemical modelling. Combining these data, the weighted mean [Br<sup>tot</sup>] is 19.2 ± 1.2 ppt in the extratropical lower stratosphere (Ex-LS) of the northern hemisphere. The inferred average Br<sup>tot</sup> for the Ex-LS is slightly smaller than expected for the middle stratosphere in 2016 (~19.6 ppt (ranging from 19-20 ppt) as reported by the WMO/UNEP Assessment (2018)). However, it reflects the expected variability in Br<sup>tot</sup> in the Ex-LS due to influxes of shorter lived brominated source and product gases from different regions of entry. A closer look into Br<sup>org</sup> and Br<sub>y</sub><sup>inorg</sup> as well as simultaneously measured transport tracers (CO, N<sub>2</sub>O, ...) and an air mass lag-time tracer (SF<sub>6</sub>), suggests that a filament of air with elevated Br<sup>tot</sup> protruded into the extratropical lowermost stratosphere (Ex-LMS) from 350-385 K and between equivalent latitudes of 55-80˚N (high bromine filament – HBrF). Lagrangian transport modelling shows the multi-pathway contributions to Ex-LMS bromine. According to CLaMS air mass origin simulations, contributions to the HBrF consist of predominantly isentropic transport from the tropical troposphere (also with elevated [Br<sup>tot</sup>] = 21.6 ± 0.7 ppt) as well as a smaller contribution from an exchange across the extratropical tropopause which are mixed into the stratospheric background air. In contrast, the surrounding LS above and below the HBrF has less tropical tropospheric air, but instead additional stratospheric background air. Of the tropical tropospheric air in the HBrF, the majority is from the outflow of the Asian monsoon anticyclone and the adjacent tropical regions, which greatly influences concentrations of trace gases transported into the Ex-LMS in boreal summer and fall. The resulting increase of Br<sup>tot</sup> in the Ex-LMS and its consequences for ozone is investigated through the TOMCAT/SLIMCAT model simulations. However, more extensive monitoring of total stratospheric bromine in more aged air (i.e., in the middle stratosphere) as well as globally and seasonally is required in addition to model simulations to fully understand its impact on Ex-LMS ozone and the radiative forcing of climate.</p>


1982 ◽  
Vol 13 (2) ◽  
pp. 61-66
Author(s):  
Christopher Orpen

This paper argues that recent criticisms of the case study method are not well-founded and that, on the contrary, there are good reasons why it should be a major, or even the dominant, mode of instruction at business schools. As a method, case studies possess a number of distinct advantages over lectures/tutorials in helping students acquire those practical skills in diagnosing and solving problems that serve to distinguish effective from ineffective managers. It is the case study method which also serves to distinguish management from other subjects and gives it the coherence it needs to be regarded as a discipline in its own right. It is argued that for these reasons the current swing away from the case study method at many business schools should be reversed.


Sign in / Sign up

Export Citation Format

Share Document