scholarly journals Meteorological Drought in Northwestern Escarpment of Ethiopian Rift Valley: Detection Seasonal and Spatial Trends

Author(s):  
Jemal Nasir Ahmed ◽  
Engdawork Assefa ◽  
Tesfay Zeleke ◽  
Eskinder Gidey

Abstract BackgroundThe Northwestern Escarpment of Ethiopian Rift Valley has been frequently affected by drought for decades in the major livelihood zones. This brought an adverse effect on the social and economic sectors because it affects significantly the smallholder farmers of the area. However, Most of these reviewed studies have limitations to show the evolutions, spatiotemporal drought frequencies, durations and severities in livelihood zone levels. Hence, the aim of this study was to monitor meteorological drought condition of the Alaje-Ofla (ALOF), Tserare Catchment (TC) and Raya Valley (RV) Livelihood Zones (LZ) from 1983 to 2016 using Standardized Precipitation Evapotranspiration Index (SPEI) at three months’ time scale. Both monthly Climate Hazards Group InfraRed Precipitations with Station data (CHIRPS) and Enhancing National Climate Service (ENACTS) temperature data (1983-2016) at moderate spatial resolution (i.e.,4 km-by-4km) were obtained from the National Meteorological Agency of Ethiopia. ResultsThis study uncovers seasonally recurring droughts that vary in severity, frequencies, and durations within as well as between the livelihood zones. The results indicated that severe drought occurred in all livelihoods zone of the study area from 1983/4 to 1991, while in the ALOFLZ and TCLZ relatively high droughts were observed. The severity and frequency of droughts were increased during the Belg (small rain) season, but decreased in Kiremt (summer) from the period 1989 to 2016. Hence, the severity of drought both on humans and livestock was severe in the area, particularly before the year 2001, but neither catastrophic drought nor food security in TCLZ and RVLZ was observed after year 2001.ConclusionStudying drought with long recorded meteorological data from a large number and uniformly distributed meteorological grids in small scale livelihood zones had great implications to identify the real trends of spatiotemporal meteorological drought. This enabled the researchers to investigate the real drought frequencies, severity, and durations in small scale areas. This study can support to improve the existing drought monitoring system and to build resilience to drought at household level.

2021 ◽  
Author(s):  
Jemal Nasir Ahmed ◽  
Engdawork Assefa ◽  
Tesfay Zeleke ◽  
Eskinder Gidey

Abstract Background: The Northwestern Escarpment of the Ethiopian Rift Valley has been frequently affected by droughts for decades. The area is among the most drought-prone and chronically food-insecure parts of the country. The study areas that include the Raya Valley livelihood Zone (RVLZ), Alagie-Offla livelihood Zone (ALOFLZ), and Tsirare Catchment Livelihood Zones (TCLZ) are amongst the most vulnerable and badly affected livelihood zones in the Northwestern Escarpment of the Ethiopian Rift Valley. Hence, this study aimed to monitor the meteorological drought conditions of the three LZs from 1983 to 2016 using the Standardized Precipitation Evapotranspiration Index (SPEI) at three months’ time scale. Both monthly Climate Hazards Group InfraRed Precipitations with Station data (CHIRPS) and Enhancing National Climate Service (ENACTS) temperature data (1983-2016) at moderate spatial resolution (i.e. 4 km-by-4km) were obtained from the National Meteorological Agency of Ethiopia. Results: This study uncovers seasonally recurring droughts that vary in severity, frequencies, and durations within and between the livelihood zones. The results indicated that severe drought occurred in all livelihoods zone of the study area from years 1983 to 1991, while ALOFLZ and TCLZ have recorded relatively higher drought severity. From 1989 to 2016, the severity and frequency of droughts were increased during the Belg (small rain) season but decreased in Kiremt (summer). In most of the study years, there have been Belg or Kiremt or both drought seasons in the study areas. The severity and frequencies of Kiremt drought in this study were higher from 1983 to 1991, better 1993 to 1998, and mildly to moderate drought from 2000-2016. As the frequencies and persistence of mild drought have increased, the intensity and precipitation amount are too small to cultivate crops and forage growth. This problem needs special considerations on the current moisture harvesting system and afforestation practices to reduce natural and human-induced drought impacts.Conclusion: Studying drought with long recorded meteorological data from a large number and uniformly distributed meteorological grids in small scale livelihood zones had great implications to identify the real trends of spatiotemporal meteorological drought. This enabled the researchers to investigate the real drought frequencies, severity, and durations in small scale areas. The study will support to improve the existing drought monitoring system and to build resilience to drought at the household level. The finding also will have a significant contribution to early warning systems, particularly at district levels. Ended, it needs to consider solutions for short and long drought impacts. The agricultural sector should consider the long-cycle crop growth patterns to reduce crop failures and forage problems.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jemal Nasir ◽  
Engdawork Assefa ◽  
Tesfaye Zeleke ◽  
Eskinder Gidey

Abstract Background The Northwestern Escarpment of the Ethiopian Rift Valley has been frequently affected by droughts for decades. The area is among the most drought-prone and chronically food-insecure parts of the country. The study areas that include the Raya Valley livelihood Zone (RVLZ), Alagie-Offla livelihood Zone (ALOFLZ), and Tsirare Catchment Livelihood Zones (TCLZ) are amongst the most vulnerable and badly affected livelihood zones in the Northwestern Escarpment of the Ethiopian Rift Valley. Hence, this study aimed to monitor the meteorological drought conditions of the three LZs from 1983 to 2016 using the Standardized Precipitation Evapotranspiration Index (SPEI) at three months’ time scale. Both monthly Climate Hazards Group InfraRed Precipitations with Station data (CHIRPS) and Enhancing National Climate Service (ENACTS) temperature data (1983–2016) at moderate spatial resolution (i.e. 4 km-by-4 km) were obtained from the National Meteorological Agency of Ethiopia. Results This study uncovers seasonally recurring droughts that vary in severity, frequencies, and durations within and between the livelihood zones. The results indicated that severe drought occurred in all livelihoods zone of the study area from years 1983 to 1991, while ALOFLZ and TCLZ have recorded relatively higher drought severity. From 1989 to 2016, the severity and frequency of droughts were increased during the Belg (small rain) season but decreased in Kiremt (summer). In most of the study years, there have been Belg or Kiremt or both drought seasons in the study areas. The severity and frequencies of Kiremt drought in this study were higher from 1983 to 1991, better 1993–1998, and mildly to moderate drought from 2000 to 2016. As the frequencies and persistence of mild drought have increased, the intensity and precipitation amount are too small to cultivate crops and forage growth. This problem needs special considerations on the current moisture harvesting system and afforestation practices to reduce natural and human-induced drought impacts. Conclusions Studying drought with long recorded meteorological data from a large number and uniformly distributed meteorological grids in small scale livelihood zones had great implications to identify the real trends of spatiotemporal meteorological drought. This enabled the researchers to investigate the real drought frequencies, severity, and durations in small scale areas. The study will support to improve the existing drought monitoring system and to build resilience to drought at the household level. The finding also will have a significant contribution to early warning systems, particularly at district levels. Ended, it needs to consider solutions for short and long drought impacts. The agricultural sector should consider the long-cycle crop growth patterns to reduce crop failures and forage problems.


Author(s):  
Mihret Dananto Ulsido ◽  
Ermias Alemu Demisse ◽  
Mekonene Ayana Gebul ◽  
Adunga Eneyew Bekelle

Author(s):  
Emmanuel Mavhura ◽  
Desmond Manatsa ◽  
Terence Mushore

Small-scale rain-fed agriculture is the main livelihood in arid to semi-arid regions of subSaharan Africa. The area is characterised by erratic rainfall and frequent droughts, making the capacity for coping with temporal water shortages essential for smallholder farmers. Focusing on the Zambezi Valley, Zimbabwe, this study investigates the impact of drought on food security and the strategies used by smallholder farmers to cope with drought. We used meteorological data and interviews to examine the rainfall variability in the study area and the drought-coping mechanisms employed by smallholder famers respectively. The results show that there are various strategies used by smallholder farmers to cope with the impact of drought. These strategies include drought-tolerant crop production, crop variety diversification, purchasing cereals through asset sales, non-governmental organisations’ food aid and gathering wild fruit. However, consecutive droughts have resulted in high food insecurity and depletion of household assets during droughts. Smallholder farmers in the valley have also resorted to a number of measures taken before, during and after the drought. Still, these strategies are not robust enough to cope with this uncertainty


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Getachew Bayable ◽  
Temesgen Gashaw

AbstractDrought is a serious threat to agriculture in Ethiopia. This study examined the spatiotemporal variability of agricultural drought and its association with climatic variables in the Upper Awash basin. Mann–Kendall (MK) trend test was employed to examine the drought trend while Sen’s slop estimator and pixel-based linear regression model were used to analyze the magnitude of drought changes. The association between agricultural drought and climatic variables was evaluated by the Pearson correlation coefficient (r). High spatiotemporal variability of drought was observed in Kiremit (June–September) and Belg (February–May) seasons. The Belg season spatial average vegetation condition index (VCI) trends were decreased insignificantly from 2001 to 2019 at a 5% significant level, whereas the spatial average VCI trends of Kiremit season were increased insignificantly. The return period of severe droughts during the Belg season was less frequent than the Kiremt season severe drought. The correlation between spatial average VCI and precipitation was positive for Belg and Kiremit seasons. Likewise, the correlation between average VCI and land surface temperature (LST) was negative in Belg and positive in Kiremit season. Moreover, the correlation between mean VCI and Pacific Ocean Sea Surface Temperature (SST) was positive for Belg and Kiremit seasons. The influencing factor of precipitation and LST on VCI during Belg season was higher than Kiremit season. The findings of this study are vital for decision-making systems and preparing plans to adjust sowing time, select drought-resistant crops, practice in situ water conservation, practice small-scale irrigation and diversify the income of smallholder farmers.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yimer Mohammed ◽  
Asnake Yimam

AbstractThis study investigated the intensity, trend and spatio-temporal variability of meteorological drought in the Lakes’ Region of Ethiopian Rift Valley using monthly rainfall and maximum and minimum temperature records for the period 1986–2019. Reconnaissance Drought Index (RDI) was employed to generate the intensity of drought at 3 and 12-months timescale. Mann-Kendall trend test was used to determine the trend of the changes in the RDI time series. The spatial extent of droughts has been interpolated by inverse distance weighted (IDW) method using the spatial analyst tool of ArcGIS. Results indicated the occurrence of different intensity and trend signals across seasons and over space in the study area. A total of 33 extreme drought months were observed in all stations during summer with varying intensity (− 2.01 at Halaba to − 3.52 at Wolaita) and 168 extreme drought months at annual timescale ranging from − 2.10 at Hawassa to − 4.51 at Wolaita. The intensity of drought events observed in Wolaita in 1986 at all timescales (RDI value of − 3.19, − 3.52 and − 4.51 for spring, summer and annual respectively) were very extraordinary and devastating. Drought magnitude showed increasing signal at 6 out of 10 stations, although statistically significant at only two stations (Arsi Negelle at all timescale and Butajira at spring and annual timescale). However, the spatial patterns of drought events didn’t exhibit clear pattern rather more localized distribution and variability. The frequency of drought incidence became intense in the study area from 2008 onwards at all timescales compared to the 1990s and 2000s.The increasing tendency of drought in recent years might be the manifestation of borderless global warming. The empirical evidences showed that drought events and their negative effects are highly localized in the study area and provide useful information for local-scale planning for drought management and response.


Author(s):  
P. Eko Prasetyo

This study has taken position for developing of small-scale industry (SSI) is necessary strategy or market conduct policy and market performance. For that objective, the realization steps needed are: (a) re-examining about national development objective; (b) conducting political system restructurization that enable all people has equal right to participate in the economic sectors; (c) allocating and distributing economic resources and production facilities in equitable manner especially for rural people; and also (d) making more deep market penetration for goods and services of SSI through issuing inceptives and positive discrimination policies for SSI in supplying their production input, production process and marketing. Promotion intensification and nourishing cooperation with another kind of enterprise will be a beneficial.


Author(s):  
Eva U. Cammayo ◽  
Nilo E. Padilla

This research aimed to improve dairy production and increase the income of dairy farmers using locally available feed resources. Small-scale milk producers rely heavily on available feed resources in the locality which are either indigenous in the area or introduced species for feed and nutrition of their dairy cattle and buffalos. Their milk output depends mainly on seasonal fluctuations in the quality and quantity of natural forage. Crop residues such as corn stover and rice straw which are high in fiber but low in nutrients serve as a feed supplement and filler to the daily diets of dairy cattle and buffalos. Cagayan Valley is an ear of top corn and rice-producing region. The potential of crop residues as feed supplements or raw materials of dairy cattle/buffalo feed mix is great. But dairy farmers still face the scarcity problem of quality feed resources for dairy animals especially during the dry season. The supply of forage is very low during the dry spell. Inadequate feed mix and low nutritive value of feed mix result in low or no milk production. Producing green corn and ensiling it to produce green corn silage preserves and prolong the storage life of forages. In this way, a stable supply of feed mix for dairy animals is assured year-round. Type of Paper: Empirical. Keywords: adoption and commercialization, dairy industry, financial viability, green-corn silage production, indigenous grasses, smallholder farmers.


Author(s):  
Sheree A Pagsuyoin ◽  
Joost R Santos

Water is a critical natural resource that sustains the productivity of many economic sectors, whether directly or indirectly. Climate change alongside rapid growth and development are a threat to water sustainability and regional productivity. In this paper, we develop an extension to the economic input-output model to assess the impact of water supply disruptions to regional economies. The model utilizes the inoperability variable, which measures the extent to which an infrastructure system or economic sector is unable to deliver its intended output. While the inoperability concept has been utilized in previous applications, this paper offers extensions that capture the time-varying nature of inoperability as the sectors recover from a disruptive event, such as drought. The model extension is capable of inserting inoperability adjustments within the drought timeline to capture time-varying likelihoods and severities, as well as the dependencies of various economic sectors on water. The model was applied to case studies of severe drought in two regions: (1) the state of Massachusetts (MA) and (2) the US National Capital Region (NCR). These regions were selected to contrast drought resilience between a mixed urban–rural region (MA) and a highly urban region (NCR). These regions also have comparable overall gross domestic products despite significant differences in the distribution and share of the economic sectors comprising each region. The results of the case studies indicate that in both regions, the utility and real estate sectors suffer the largest economic loss; nonetheless, results also identify region-specific sectors that incur significant losses. For the NCR, three sectors in the top 10 ranking of highest economic losses are government-related, whereas in the MA, four sectors in the top 10 are manufacturing sectors. Furthermore, the accommodation sector has also been included in the NCR case intuitively because of the high concentration of museums and famous landmarks. In contrast, the Wholesale Trade sector was among the sectors with the highest economic losses in the MA case study because of its large geographic size conducive for warehouses used as nodes for large-scale supply chain networks. Future modeling extensions could potentially include analysis of water demand and supply management strategies that can enhance regional resilience against droughts. Other regional case studies can also be pursued in future efforts to analyze various categories of drought severity beyond the case studies featured in this paper.


Sign in / Sign up

Export Citation Format

Share Document