scholarly journals AR Deficiency Inhibits LPS-induced M1 Response in Macrophages by Activating Autophagy

Author(s):  
Peng Cheng ◽  
Jianwei Xie ◽  
Zhiyong Liu ◽  
Jian Wang

Abstract Macrophage M1 polarization mediates inflammatory responses and tissue damage. Recently, aldose reductase (AR) has been shown to play a critical role in of M1 polarization in macrophages. However, the underlying mechanisms are unknown. Here, we demonstrated, for the first time, that AR deficiency repressed the induction of inducible nitric oxide synthase in lipopolysaccharide (LPS)-stimulated macrophages via activation of autophagy. This suppression was related to a defect in the inhibitor of nuclear factor κB (NF-κB) kinase (IKK) complex in the classical NF-κB pathway. However, the mRNA levels of the IKKβ and IKKγ were not reduced in LPS-treated AR knockout (KO) macrophages, indicating that their proteins were downregulated at the post-transcriptional level. We discovered that LPS stimuli induced the recruitment of more beclin1 and increased autophagosome formation in AR-deficient macrophages. Blocking autophagy by 3-methyladenine and ammonium chloride treatment restored IKKβ and IKKγ protein levels and increased nitric oxide synthase production in LPS-stimulated AR-deficient macrophages. More assembled IKKβ and IKKγ undergo ubiquitination and recruit the autophagic adaptor p62 in LPS-induced AR KO macrophages, promoting their delivery to autophagosomes and lysosomes. Collectively, these findings suggest that AR deficiency involves in the regulation of NF-κB signaling, and extends the role of selective autophagy in fine-tuned M1 macrophage polarization.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peng Cheng ◽  
Jianwei Xie ◽  
Zhiyong Liu ◽  
Jian Wang

AbstractMacrophage M1 polarization mediates inflammatory responses and tissue damage. Recently, aldose reductase (AR) has been shown to play a critical role in M1 polarization in macrophages. However, the underlying mechanisms are unknown. Here, we demonstrated, for the first time, that AR deficiency repressed the induction of inducible nitric oxide synthase in lipopolysaccharide (LPS)-stimulated macrophages via activation of autophagy. This suppression was related to a defect in the inhibitor of nuclear factor κB (NF-κB) kinase (IKK) complex in the classical NF-κB pathway. However, the mRNA levels of IKKβ and IKKγ were not reduced in LPS-treated AR knockout (KO) macrophages, indicating that their proteins were downregulated at the post-transcriptional level. We discovered that LPS stimuli induced the recruitment of more beclin1 and increased autophagosome formation in AR-deficient macrophages. Blocking autophagy through 3-methyladenine and ammonium chloride treatment restored IKKβ and IKKγ protein levels and increased nitric oxide synthase production in LPS-stimulated AR-deficient macrophages. More assembled IKKβ and IKKγ underwent ubiquitination and recruited the autophagic adaptor p62 in LPS-induced AR KO macrophages, promoting their delivery to autophagosomes and lysosomes. Collectively, these findings suggest that AR deficiency is involved in the regulation of NF-κB signaling, and extends the role of selective autophagy in fine-tuned M1 macrophage polarization.


1999 ◽  
Vol 112 (18) ◽  
pp. 3147-3155
Author(s):  
N.A. Callejas ◽  
M. Casado ◽  
L. Bosca ◽  
P. Martin-Sanz

Recently isolated trophoblasts express nitric oxide synthase 2 (NOS-2) and cyclooxygenase 2 (COX-2), decreasing the levels of the corresponding mRNAs when the cells were maintained in culture. The sustained expression of COX-2 and NOS-2 in trophoblasts was dependent on the activation of nuclear factor kappaB (NF-kappaB) since proteasome inhibitors and antioxidants that abrogated NF-kappaB activity suppressed the induction of both genes. The time-dependent fall of the mRNA levels of NOS-2 and COX-2 paralleled the inhibition of NF-kappaB, determined by electrophoretic mobility shift assays, and the increase of the IkappaBalpha and IkappaBbeta inhibitory proteins. Isolated trophoblasts synthesized reactive oxygen intermediates (ROI), a process impaired after culturing the cells, and that might be involved in the NF-kappaB activation process. Moreover, treatment of recently isolated cells with ROI scavengers suppressed the expression of COX-2 and NOS-2. Challenge of trophoblasts with interleukin-1beta up-regulated the expression of both proteins, an effect that was potentiated by lipopolysaccharide. These results indicate that the physiological expression of NOS-2 and COX-2 in trophoblasts involves a sustained activation of NF-kappaB which inhibition abrogates the inducibility of both genes.


2018 ◽  
Vol 132 (14) ◽  
pp. 1581-1596 ◽  
Author(s):  
Pei-Chi Chan ◽  
Ting-Ni Wu ◽  
Ying-Chuan Chen ◽  
Chieh-Hua Lu ◽  
Martin Wabitsch ◽  
...  

Adipose tissue (AT) inflammation is crucial to the development of obesity-associated insulin resistance. Our aim was to investigate the contribution of cyclooxygenase-2 (COX-2)/macrophage migration inhibitory factor (MIF)-mediated cross-talk between hypertrophic adipocytes and macrophages to the etiology of AT inflammation and the involvement of CD74 using human SGBS adipocytes, THP-1 macrophages and mice fed a high-fat (HF) diet. The MIF and CD74 mRNA levels in the adipocytes and stromal vascular cells (SVCs) of white fat were highly correlated with body weight (BW), homeostatic model assessment for insulin resistance (HOMA-IR), and adipose macrophage marker expression levels, especially those in SVCs. COX-2 inhibition suppressed the elevation of MIF production in HF white adipocytes as well as palmitate and hypoxic-treated SGBS adipocytes. Treatment of adipocytes transfected with shCOX-2 and siMIF or subjected to MIF depletion in the medium reversed the pro-inflammatory responses in co-incubated THP-1 cells. Inhibition of NF-κB activation reversed the COX2-dependent MIF secretion from treated adipocytes. The targeted inhibition of macrophage CD74 prevented M1 macrophage polarization in the above co-culture model. The COX-2-dependent increases in CD74 gene expression and MIF release in M1-polarized macrophages facilitated the expression of COX-2 and MIF in co-cultured SGBS adipocytes. CD74 shRNA intravenous injection suppressed HF-induced AT M1 macrophage polarization and inflammation as well as insulin resistance in mice. The present study suggested that COX-2-mediated MIF secretion through NF-κB activation from hypertrophic and hypoxic adipocytes as well as M1 macrophages might substantially contribute to the phenotypic switch of AT macrophages through CD74 in obesity. Inhibition of CD74 could attenuate AT inflammation and insulin resistance in the development of HF diet-induced obesity.


1994 ◽  
Vol 304 (2) ◽  
pp. 337-340 ◽  
Author(s):  
D Kunz ◽  
G Walker ◽  
J Pfeilschifter

Inducible nitric oxide synthase (iNOS) is expressed in renal mesangial cells in response to two principal classes of activating signals that interact in a synergistic fashion. These two groups of activators comprise inflammatory cytokines such as interleukin (IL)-1 beta or tumour necrosis factor alpha and agents that elevate cellular levels of cyclic AMP (cAMP). We examined whether dexamethasone differentially affects iNOS induction in response to IL-1 beta and a membrane-permeable cAMP analogue, N6,O-2′-dibutyryladenosine 3′,5′-phosphate (Bt2cAMP). Nanomolar concentrations of dexamethasone suppress IL-1 beta- as well as Bt2cAMP-induced iNOS protein expression and production of nitrite, the stable end product of nitric oxide (NO) formation. In contrast, dexamethasone prevents induction of iNOS mRNA in response to Bt2cAMP without affecting IL-1 beta-triggered increase in iNOS mRNA levels. These data suggest that dexamethasone acts at different levels, depending on the stimulus used to suppress iNOS induction in mesangial cells.


2003 ◽  
Vol 32 (11) ◽  
pp. 998-999 ◽  
Author(s):  
Hiroto Takahashi ◽  
Yuko Sato ◽  
Magoli Moreau ◽  
Marie-Agnes Sari ◽  
Jean-Luc Boucher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document