scholarly journals The Effect of Turbulence Modelling on the Assessment of Platelet Activation

Author(s):  
Silvia Bozzi ◽  
Davide Dominissini ◽  
Alberto Redaelli ◽  
Giuseppe Passoni

Abstract Pathological platelet activation induced by abnormal shear stresses is regarded as a main clinical complication in recipients of cardiovascular biomedical implantable devices and prostheses. In order to improve their performance computational fluid dynamics (CFD) has been used to evaluate flow fields and related shear stresses. More recently CFD models have been equipped with mathematical models that describe the relation between fluid dynamics variables, and in particular shear stresses, and the platelet activation state (PAS). These mathematical models typically use a Lagrangian approach to extract the shear stresses along possible platelet trajectories. However, in the case of turbulent flow, the choice of the proper turbulence closure model is still debated for both concerning its effect on Lagrangian statistics and shear stress calculation. In our study five numerical simulations of the flow through a mechanical heart valve were performed and then compared in terms of Eulerian and Lagrangian quantities: a direct numerical simulation (DNS), a large eddy simulation (LES), two Reynolds-averaged Navier-Stokes (RANS) simulations (SST k-ω and RSM) and a “Laminar” (no turbulence modelling on a Taylor microscale-based grid) simulation. Results exhibit a large variability in the PAS assessment depending on the turbulence model adopted. “Laminar” and RSM estimates of platelet activation are about 60% below DNS, while LES is 16% less. Surprisingly, PAS estimated from the SST k-ω velocity field is only 8% less than from DNS data. This appears more artificial than physical as can be inferred after comparing frequency distributions of PAS and of the different Lagrangian variables of the mechano-biological model of platelet activation. Our study indicates that turbulence closures can lead to a severe underestimation of platelet activation and suggests that turbulence should be fully resolved by DNS when assessing blood damage in blood contacting devices.

2010 ◽  
Vol 4 (1) ◽  
Author(s):  
V. Govindarajan ◽  
H. S. Udaykumar ◽  
L. H. Herbertson ◽  
S. Deutsch ◽  
K. B. Manning ◽  
...  

The fluid dynamics during valve closure resulting in high shear flows and large residence times of particles has been implicated in platelet activation and thrombus formation in mechanical heart valves. Our previous studies with bileaflet valves have shown that large shear stresses induced in the gap between the leaflet edge and valve housing results in relatively high platelet activation levels, whereas flow between the leaflets results in shed vortices not conducive to platelet damage. In this study we compare the result of closing dynamics of a tilting disk valve with that of a bileaflet valve. The two-dimensional fluid-structure interaction analysis of a tilting disk valve closure mechanics is performed with a fixed grid Cartesian mesh flow solver with local mesh refinement, and a Lagrangian particle dynamic analysis for computation of potential for platelet activation. Throughout the simulation the flow remains in the laminar regime, and the flow through the gap width is marked by the development of a shear layer, which separates from the leaflet downstream of the valve. Zones of recirculation are observed in the gap between the leaflet edge and valve housing on the major orifice region of the tilting disk valve and are seen to be migrating toward the minor orifice region. Jet flow is observed at the minor orifice region and a vortex is formed, which sheds in the direction of fluid motion, as observed in experiments using PIV measurements. The activation parameter computed for the tilting disk valve at the time of closure was found to be 2.7 times greater than that of the bileaflet mechanical valve and was found to be in the vicinity of the minor orifice region, mainly due to the migration of vortical structures from the major to the minor orifice region during the leaflet rebound of the closing phase.


Author(s):  
Danny Bluestein ◽  
João S. Soares ◽  
Peng Zhang ◽  
Chao Gao ◽  
Seetha Pothapragada ◽  
...  

The coagulation cascade of blood may be initiated by flow induced platelet activation, which prompts clot formation in prosthetic cardiovascular devices and arterial disease processes. While platelet activation may be induced by biochemical agonists, shear stresses arising from pathological flow patterns enhance the propensity of platelets to activate and initiate the intrinsic pathway of coagulation, leading to thrombosis. Upon activation platelets undergo complex biochemical and morphological changes: organelles are centralized, membrane glycoproteins undergo conformational changes, and adhesive pseudopods are extended. Activated platelets polymerize fibrinogen into a fibrin network that enmeshes red blood cells. Activated platelets also cross-talk and aggregate to form thrombi. Current numerical simulations to model this complex process mostly treat blood as a continuum and solve the Navier-Stokes equations governing blood flow, coupled with diffusion-convection-reaction equations. It requires various complex constitutive relations or simplifying assumptions, and is limited to μm level scales. However, molecular mechanisms governing platelet shape change upon activation and their effect on rheological properties can be in the nm level scales. To address this challenge, a multiscale approach which departs from continuum approaches, may offer an effective means to bridge the gap between macroscopic flow and cellular scales. Molecular dynamics (MD) and dissipative particle dynamics (DPD) methods have been employed in recent years to simulate complex processes at the molecular scales, and various viscous fluids at low-to-high Reynolds numbers at mesoscopic scales. Such particle methods possess important properties at the mesoscopic scale: complex fluids with heterogeneous particles can be modeled, allowing the simulation of processes which are otherwise very difficult to solve by continuum approaches. It is becoming a powerful tool for simulating complex blood flow, red blood cells interactions, and platelet-mediated thrombosis involving platelet activation, aggregation, and adhesion.


2015 ◽  
Vol 9 (1) ◽  
pp. 62-68 ◽  
Author(s):  
John C Westerdale ◽  
Ronald Adrian ◽  
Kyle Squires ◽  
Hari Chaliki ◽  
Marek Belohlavek

We studied left ventricular flow patterns for a range of rotational orientations of a bileaflet mechanical heart valve (MHV) implanted in the mitral position of an elastic model of a beating left ventricle (LV). The valve was rotated through 3 angular positions (0, 45, and 90 degrees) about the LV long axis. Ultrasound scans of the elastic LV were obtained in four apical 2-dimensional (2D) imaging projections, each with 45 degrees of separation. Particle imaging velocimetry was performed during the diastolic period to quantify the in-plane velocity field obtained by computer tracking of diluted microbubbles in the acquired ultrasound projections. The resulting velocity field, vorticity, and shear stresses were statistically significantly altered by angular positioning of the mechanical valve, although the results did not show any specific trend with the valve angular position and were highly dependent on the orientation of the imaging plane with respect to the valve. We conclude that bileaflet MHV orientation influences hemodynamics of LV filling. However, determination of ‘optimal’ valve orientation cannot be made without measurement techniques that account for the highly 3-dimensional (3D) intraventricular flow.


2009 ◽  
Vol 12 (3) ◽  
pp. 241-250 ◽  
Author(s):  
Petra Claeys ◽  
Ann van Griensven ◽  
Lorenzo Benedetti ◽  
Bernard De Baets ◽  
Peter A. Vanrolleghem

Mathematical models provide insight into numerous biological, physical and chemical systems. They can be used in process design, optimisation, control and decision support, as acknowledged in many different fields of scientific research. Mathematical models do not always yield reliable results and uncertainty should be taken into account. At present, it is possible to identify some factors contributing to uncertainty, and the awareness of the necessity of uncertainty assessment is rising. In the fields of Environmental Modelling and Computational Fluid Dynamics, for instance, terminology related to uncertainty exists and is generally accepted. However, the uncertainty due to the choice of the numerical solver and its settings used to compute the solution of the models did not receive much attention in the past. A motivating example on the existence and effect of numerical uncertainty is provided and clearly shows that we can no longer ignore it. This paper introduces a new terminology to support communication about uncertainty caused by numerical solvers, so that scientists become perceptive to it.


2021 ◽  
Vol 2059 (1) ◽  
pp. 012003
Author(s):  
A Burmistrov ◽  
A Raykov ◽  
S Salikeev ◽  
E Kapustin

Abstract Numerical mathematical models of non-contact oil free scroll, Roots and screw vacuum pumps are developed. Modelling was carried out with the help of software CFD ANSYS-CFX and program TwinMesh for dynamic meshing. Pumping characteristics of non-contact pumps in viscous flow with the help of SST-turbulence model were calculated for varying rotors profiles, clearances, and rotating speeds. Comparison with experimental data verified adequacy of developed CFD models.


RSC Advances ◽  
2019 ◽  
Vol 9 (55) ◽  
pp. 32034-32046 ◽  
Author(s):  
Yan Jin ◽  
Cheng-Lin Liu ◽  
Xing-Fu Song ◽  
Jian-Guo Yu

The hydrodynamic properties and shear stresses experienced by a membrane bioreactor (MBR) are directly related to its rate of membrane fouling.


2018 ◽  
Vol 204 ◽  
pp. 896-911 ◽  
Author(s):  
J. Awrejcewicz ◽  
V.A. Krysko ◽  
M.V. Zhigalov ◽  
I.V. Papkova ◽  
V.A. Krysko

Author(s):  
Rajnish K. Calay ◽  
Arne E. Holdo

The Computational Fluid Dynamics (CFD) is now increasingly being used for modeling industrial flows, i.e. flows which are multiphase and turbulent. Numerical modeling of flows where momentum, heat and mass transfer occurs at the interface presents various difficulties due to the wide range of mechanisms and flow scenarios present. This paper attempts to provide a summary of available mathematical models and techniques for two-phase flows. Some comments are also made on the models available in the commercially available codes.


Author(s):  
Han Li ◽  
Huhu Wang ◽  
Yassin A. Hassan ◽  
N. K. Anand

Two or multiple parallel jets are an important shear flow that widely existing in many industrial applications. The interaction between turbulence jets enables fast and thorough mixing of two fluids. The mixing feature of parallel jets has many engineering applications, such as, in Generation IV conceptual nuclear reactors, the coolants merge in upper or lower plenum after passing through the reactor core. While study of parallel jets mixing phenomenon, numerical experiments such as Computational Fluid Dynamics (CFD) simulations are extensively incorporated. Validation of varied turbulent models is of importance to make sure that the numerical results could be trusted and served as a guideline further design purpose. Many commercial CFD packages in the market such as FLUENT and Star CCM+ can provide the ability to simulate turbulent flow with predefined turbulence model, however, such commercial solvers may lack the flexibility that allow users build their own models for R&D purpose. The existing solvers in OpenFOAM are developed to fulfill both academic and industrial needs by achieving large-scale computational capability with a variety of physical models. Moreover, as an open source CFD toolbox, OpenFOAM grants users full control of the source code with complete freedom of customization. The purpose of this study is to perform CFD simulation using OpenFOAM for two submerged parallel jets issuing from two rectangular channels. Fully hexahedron multi-density mesh is generated using blockMesh utility to ensure velocity gradients are properly evaluated. A generalized-multi-grid solver is used to enhance convergence. Based on Reynolds-Averaged Navier-Stokes Equations (RANS), the realizable k-ε and k-ε shear stress transport (SST) are selected to model turbulent flow. Steady state Finite Volume solver simpleFoam is used to perform the simulation. In addition, data from experiments run in Thermal-Hydraulic Lab at Texas A&M University using particle image velocity (PIV) and Laser Doppler Anemometry (LDA) methods are considered in order to compare and validate simulation results. A number of turbulence characteristic such as mean velocities, turbulent intensities, z-component vorticity were compared with experiments. It was found that for stream-wise mean velocity profile as well as shear stresses, the realizable k-ε model exhibits a good agreement with experimental data. However, velocity fluctuation and turbulence intensities, simulation results showed a certain discrepancy.


Sign in / Sign up

Export Citation Format

Share Document