scholarly journals Categorization of Common Pigmented Skin Lesions (CPSL) using Multi-Deep Features and Support Vector Machine

Author(s):  
SANTI BEHERA ◽  
PRABIRA SETHY

Abstract The skin is the main organ. It is approximately 8 pounds for the average adult. Our skin is a truly wonderful organ. It isolates us and shields our bodies from hazards. However, the skin is also vulnerable to damage and distracted from its original appearance; brown, black, or blue, or combinations of those colors, known as pigmented skin lesions. These common pigmented skin lesions (CPSL) are the leading factor of skin cancer, or can say these are the primary causes of skin cancer. In the healthcare sector, the categorization of CPSL is the main problem because of inaccurate outputs, overfitting, and higher computational costs. Hence, we proposed a classification model based on multi-deep feature and support vector machine (SVM) for the classification of CPSL. The proposed system comprises two phases: first, evaluate the 11 CNN model's performance in the deep feature extraction approach with SVM. Then, concatenate the top performed three CNN model's deep features and with the help of SVM to categorize the CPSL. In the second step, 8192 and 12288 features are obtained by combining binary and triple networks of 4096 features from the top performed CNN model. These features are also given to the SVM classifiers. The SVM results are also evaluated with principal component analysis (PCA) algorithm to the combined feature of 8192 and 12288. The highest results are obtained with 12288 features. The experimentation results, the combination of the deep feature of Alexnet, VGG16 & VGG19, achieved the highest accuracy of 91.7% using SVM classifier. As a result, the results show that the proposed methods are a useful tool for CPSL classification.

2020 ◽  
Vol 8 (4) ◽  
pp. 01-13
Author(s):  
Ding-Yu Fei ◽  
Osamah Almasiri ◽  
Azhar Rafig

Skin cancer continues to be a common malignancy that has steadily increased each year. The need for early detection of such skin lesions is critical to preventing further medical complications. The main method for detection of skin cancer is by microscopic examination of skin lesions. Great efforts have been placed to use computer aided technologies for the analysis of skin lesions. In this study, we present a method for an algorithm design using Support Vector Machine (SVM) learning classification based on Particle swarm optimization (PSO) principles in order to improve the accuracy of skin lesion image analysis and classification for further diagnosis. Hospital Pedro Hispano (PH²) dataset with 200 images is used for this study. The method presented here incorporates 46 texture features in order to complete comprehensive image analytics and classification. The proposed method demonstrates an opportunity to explore best possible criteria in image analytics for clinical decision support.


2014 ◽  
Vol 704 ◽  
pp. 412-418
Author(s):  
Li Rong Xiong ◽  
Zhi Hui Zhu

An identification method for cracked eggs by means of the digital image technology was proposed in this paper. Firstly, an ideal machine vision system was built and the images of good eggs and cracked eggs were obtained by CCD camera. Secondly, each image was decomposed on two layers of wavelet, so 6 high-frequency sub-images and 2 low-frequency sub-images were extracted. Then joint probability matrix after wavelet transform had been calculated and 5 parameters for each high-frequency sub-images were extracted, so the total of the joint probability matrix parameters was 30 for 6 high-frequency sub-images. At the same time, 10 wavelet energy parameters were obtained. Thirdly, four main factor component scores were selected from above 40 feature parameters after principal component analysis, which were input to support vector machine. Finally, classification model was built by support vector machine. Experiments show that the proposed method was effective to identify the cracked eggs from good eggs and the identification rate was 93.75%.


2021 ◽  
Vol 40 ◽  
pp. 03008
Author(s):  
Madhu M. Nashipudimath ◽  
Pooja Pillai ◽  
Anupama Subramanian ◽  
Vani Nair ◽  
Sarah Khalife

Voice recognition plays a key function in spoken communication that facilitates identifying the emotions of a person that reflects within the voice. Gender classification through speech is a popular Human Computer Interaction (HCI) method on account that determining gender through computer is hard. This led to the development of a model for "Voice feature extraction for Emotion and Gender Recognition". The speech signal consists of semantic information, speaker information (gender, age, emotional state), accompanied by noise. Females and males have specific vocal traits because of their acoustical and perceptual variations along with a variety of emotions which bring their own specific perceptions. In order to explore this area, feature extraction requires pre-processing of data, which is necessary for increasing the accuracy. The proposed model follows steps such as data extraction, pre-processing using Voice Activity Detector(VAD), feature extraction using Mel-Frequency Cepstral Coefficient(MFCC), feature reduction by Principal Component Analysis(PCA) and Support Vector Machine (SVM) classifier. The proposed combination of techniques produced better results which can be useful in healthcare sector, virtual assistants, security purposes and other fields related to Human Machine Interaction domain.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Joanna Jaworek-Korjakowska

Background. One of the fatal disorders causing death is malignant melanoma, the deadliest form of skin cancer. The aim of the modern dermatology is the early detection of skin cancer, which usually results in reducing the mortality rate and less extensive treatment. This paper presents a study on classification of melanoma in the early stage of development using SVMs as a useful technique for data classification.Method. In this paper an automatic algorithm for the classification of melanomas in their early stage, with a diameter under 5 mm, has been presented. The system contains the following steps: image enhancement, lesion segmentation, feature calculation and selection, and classification stage using SVMs.Results. The algorithm has been tested on 200 images including 70 melanomas and 130 benign lesions. The SVM classifier achieved sensitivity of 90% and specificity of 96%. The results indicate that the proposed approach captured most of the malignant cases and could provide reliable information for effective skin mole examination.Conclusions. Micro-melanomas due to the small size and low advancement of development create enormous difficulties during the diagnosis even for experts. The use of advanced equipment and sophisticated computer systems can help in the early diagnosis of skin lesions.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 941
Author(s):  
Hamid Akramifard ◽  
MohammadAli Balafar ◽  
SeyedNaser Razavi ◽  
Abd Rahman Ramli

In the past decade, many studies have been conducted to advance computer-aided systems for Alzheimer’s disease (AD) diagnosis. Most of them have recently developed systems concentrated on extracting and combining features from MRI, PET, and CSF. For the most part, they have obtained very high performance. However, improving the performance of a classification problem is complicated, specifically when the model’s accuracy or other performance measurements are higher than 90%. In this study, a novel methodology is proposed to address this problem, specifically in Alzheimer’s disease diagnosis classification. This methodology is the first of its kind in the literature, based on the notion of replication on the feature space instead of the traditional sample space. Briefly, the main steps of the proposed method include extracting, embedding, and exploring the best subset of features. For feature extraction, we adopt VBM-SPM; for embedding features, a concatenation strategy is used on the features to ultimately create one feature vector for each subject. Principal component analysis is applied to extract new features, forming a low-dimensional compact space. A novel process is applied by replicating selected components, assessing the classification model, and repeating the replication until performance divergence or convergence. The proposed method aims to explore most significant features and highest-preforming model at the same time, to classify normal subjects from AD and mild cognitive impairment (MCI) patients. In each epoch, a small subset of candidate features is assessed by support vector machine (SVM) classifier. This repeating procedure is continued until the highest performance is achieved. Experimental results reveal the highest performance reported in the literature for this specific classification problem. We obtained a model with accuracies of 98.81%, 81.61%, and 81.40% for AD vs. normal control (NC), MCI vs. NC, and AD vs. MCI classification, respectively.


Diagnostics ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 103 ◽  
Author(s):  
Łukasz Szyc ◽  
Uwe Hillen ◽  
Constantin Scharlach ◽  
Friederike Kauer ◽  
Claus Garbe

The need for diagnosing malignant melanoma in its earliest stages results in an increasing number of unnecessary excisions. Objective criteria beyond the visual inspection are needed to distinguish between benign and malignant melanocytic tumors in vivo. Fluorescence spectra collected during the prospective, multicenter observational study (“FLIMMA”) were retrospectively analyzed by the newly developed machine learning algorithm. The formalin-fixed paraffin-embedded (FFPE) tissue samples of 214 pigmented skin lesions (PSLs) from 144 patients were examined by two independent pathologists in addition to the first diagnosis from the FLIMMA study, resulting in three histopathological results per sample. The support vector machine classifier was trained on 17,918 fluorescence spectra from 49 lesions labeled as malignant (1) and benign (0) by three histopathologists. A scoring system that scales linearly with the number of the “malignant spectra” was designed to classify the lesion as malignant melanoma (score > 28) or non-melanoma (score ≤ 28). Finally, the scoring algorithm was validated on 165 lesions to ensure model prediction power and to estimate the diagnostic accuracy of dermatofluoroscopy in melanoma detection. The scoring algorithm revealed a sensitivity of 91.7% and a specificity of 83.0% in diagnosing malignant melanoma. Using additionally the image segmentation for normalization of lesions’ region of interest, a further improvement of sensitivity of 95.8% was achieved, with a corresponding specificity of 80.9%.


Author(s):  
Prabira Kumar Sethy ◽  
Santi Kumari Behera ◽  
Pradyumna Kumar Ratha ◽  
Preesat Biswas

The detection of coronavirus (COVID-19) is now a critical task for the medical practitioner. The coronavirus spread so quickly between people and approaches 100,000 people worldwide. In this consequence, it is very much essential to identify the infected people so that prevention of spread can be taken. In this paper, the deep feature plus support vector machine (SVM) based methodology is suggested for detection of coronavirus infected patient using X-ray images. For classification, SVM is used instead of deep learning based classifier, as the later one need a large dataset for training and validation. The deep features from the fully connected layer of CNN model are extracted and fed to SVM for classification purpose. The SVM classifies the corona affected X-ray images from others. The methodology consists of three categories of Xray images, i.e., COVID-19, pneumonia and normal. The method is beneficial for the medical practitioner to classify among the COVID-19 patient, pneumonia patient and healthy people. SVM is evaluated for detection of COVID-19 using the deep features of different 13 number of CNN models. The SVM produced the best results using the deep feature of ResNet50. The classification model, i.e. ResNet50 plus SVM achieved accuracy, sensitivity, FPR and F1 score of 95.33%,95.33%,2.33% and 95.34% respectively for detection of COVID-19 (ignoring SARS, MERS and ARDS). Again, the highest accuracy achieved by ResNet50 plus SVM is 98.66%. The result is based on the Xray images available in the repository of GitHub and Kaggle. As the data set is in hundreds, the classification based on SVM is more robust compared to the transfer learning approach. Also, a comparison analysis of other traditional classification method is carried out. The traditional methods are local binary patterns (LBP) plus SVM, histogram of oriented gradients (HOG) plus SVM and Gray Level Co-occurrence Matrix (GLCM) plus SVM. In traditional image classification method, LBP plus SVM achieved 93.4% of accuracy.


Author(s):  
Vani Nair ◽  
Pooja Pillai ◽  
Anupama Subramanian ◽  
Sarah Khalife ◽  
Dr. Madhu Nashipudimath

Voice recognition plays a key role in spoken communication that helps to identify the emotions of a person that reflects in the voice. Gender classification through speech is a widely used Human Computer Interaction (HCI) as it is not easy to identify gender by computer. This led to the development of a model for “Voice feature extraction for Emotion and Gender Recognition”. The speech signal consists of semantic information, speaker information (gender, age, emotional state), accompanied by noise. Females and males have different voice characteristics due to their acoustical and perceptual differences along with a variety of emotions which convey their own unique perceptions. In order to explore this area, feature extraction requires pre- processing of data, which is necessary for increasing the accuracy. The proposed model follows steps such as data extraction, pre- processing using Voice Activity Detector (VAD), feature extraction using Mel-Frequency Cepstral Coefficient (MFCC), feature reduction by Principal Component Analysis (PCA) and Support Vector Machine (SVM) classifier. The proposed combination of techniques produced better results which can be useful in the healthcare sector, virtual assistants, security purposes and other fields related to the Human Machine Interaction domain. 


2021 ◽  
Author(s):  
S M Nazmuz Sakib

This project is aimed towards developing a model using a camera and a 2D Raspberry Pi (RP) LiDAR for speed estimation in use for Intelligent Road Transportation. Our project aims to fuse the two 2D references in order to be able to not only estimate speed of vehicles passing but also generate a vehicle profile by obtaining its dimensions and also classify each vehicle.We have successfully developed a speed estimating model using our LiDAR and car classification model for our vehicles using a Support Vector Machine (SVM) classifier. We have also achieved sensor fusion of our camera and 2D LiDAR.For testing our model, we created a prototype using a gantry, model cars, 5 MP RP 3 B+ camera, a RP 2D LiDAR and a RP 3 B+ Microprocessor.


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 869
Author(s):  
Yun Peng ◽  
Shenyi Zhao ◽  
Jizhan Liu

Proper identification of different grape varieties by smart machinery is of great importance to modern agriculture production. In this paper, a fast and accurate identification method based on Canonical Correlation Analysis (CCA), which can fuse different deep features extracted from Convolutional Neural Network (CNN), plus Support Vector Machine (SVM) is proposed. In this research, based on an open dataset, three types of state-of-the-art CNNs, seven species of deep features, and a multi-class SVM classifier were studied. First, the images were resized to meet the input requirements of a CNN. Then, the deep features of the input images were extracted by a specific deep features layer of the CNN. Next, two kinds of deep features from different networks were fused by CCA to increase the effective classification feature information. Finally, a multi-class SVM classifier was trained with the fused features. When applied to an open dataset, the model outcome shows that the fused deep features with any combination can obtain better identification performance than by using a single type of deep feature. The fusion of fc6 (in AlexNet network) and Fc1000 (in ResNet50 network) deep features obtained the best identification performance. The average F1 Score of 96.9% was 8.7% higher compared to the best performance of a single deep feature, i.e., Fc1000 of ResNet101, which was 88.2%. Furthermore, the F1 Score of the proposed method is 2.7% higher than the best performance obtained by using a CNN directly. The experimental results show that the method proposed in this paper can achieve fast and accurate identification of grape varieties. Based on the proposed algorithm, the smart machinery in agriculture can take more targeted measures based on the different characteristics of different grape varieties for further improvement of the yield and quality of grape production.


Sign in / Sign up

Export Citation Format

Share Document