Mid-wavelength Infrared Avalanche Photodetector with AlAsSb/GaSb Superlattice

Author(s):  
Jiakai Li ◽  
Arash Dehzangi ◽  
Gail Brown ◽  
Manijeh Razeghi

Abstract This work demonstrates a mid-wavelength infrared separate absorption and multiplication avalanche photodiode (SAM-APD) with AlGaAsSb/GaSb multi-quantum well as the multiplication layer and InAsSb bulk material as the absorption layer. The InAsSb-based SAM-APD structure was grown by molecular beam epitaxy. The device exhibits a 100 % cut-off wavelength of ~5.3 µm at 150 K and ~5.6 µm at 200 K. At 150 K and 200 K, the responsivity of the SAM-APD reaches a peak value of 2.26 A/W and 3.84 A/W at 4.0 µm under -1.0 V applied bias, respectively. The SAM-APD device was designed to have electron dominated avalanching mechanism via the multi-quantum well structure as the avalanche architecture. A multiplication gain value of 29 at 200 K was achieved under −14.7 V bias voltage. The electron and hole impact ionization coefficients were calculated and compared. A carrier ionization ratio of ~0.097 was achieved at 200 K.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiakai Li ◽  
Arash Dehzangi ◽  
Gail Brown ◽  
Manijeh Razeghi

AbstractIn this work, a mid-wavelength infrared separate absorption and multiplication avalanche photodiode (SAM-APD) with 100% cut-off wavelength of ~ 5.0 µm at 200 K grown by molecular beam epitaxy was demonstrated. The InAsSb-based SAM-APD device was designed to have electron dominated avalanche mechanism via the band structure engineered multi-quantum well structure based on AlAsSb/GaSb H-structure superlattice and InAsSb material in the multiplication region. The device exhibits a maximum multiplication gain of 29 at 200 K under -14.7 bias voltage. The maximum multiplication gain value for the MWIR SAM-APD increases from 29 at 200 K to 121 at 150 K. The electron and hole impact ionization coefficients were derived and the large difference between their value was observed. The carrier ionization ratio for the MWIR SAM-APD device was calculated to be ~ 0.097 at 200 K.


2020 ◽  
Vol 2 (4) ◽  
pp. 591-599
Author(s):  
Arash Dehzangi ◽  
Jiakai Li ◽  
Lakshay Gautam ◽  
Manijeh Razeghi

This work demonstrates a mid-wavelength infrared InAs/InSb superlattice avalanche photodiode (APD). The superlattice APD structure was grown by molecular beam epitaxy on GaSb substrate. The device exhibits a 100 % cut-off wavelength of 4.6 µm at 150 K and 4.30 µm at 77 K. At 150 and 77 K, the device responsivity reaches peak values of 2.49 and 2.32 A/W at 3.75 µm under −1.0 V applied bias, respectively. The device reveals an electron dominated avalanching mechanism with a gain value of 6 at 150 K and 7.4 at 77 K which was observed under −6.5 V bias voltage. The gain value was measured at different temperatures and different diode sizes. The electron and hole impact ionization coefficients were calculated and compared to give a better prospect of the performance of the device.


2006 ◽  
Vol 121 (2) ◽  
pp. 403-408 ◽  
Author(s):  
M. Zhao ◽  
A. Karim ◽  
W.-X. Ni ◽  
C.R. Pidgeon ◽  
P.J. Phillips ◽  
...  

1985 ◽  
Vol 24 (Part 2, No. 12) ◽  
pp. L911-L913 ◽  
Author(s):  
Hidetoshi Iwamura ◽  
Tadashi Saku ◽  
Yoshiro Hirayama ◽  
Yoshifumi Suzuki ◽  
Hiroshi Okamoto

Sign in / Sign up

Export Citation Format

Share Document