scholarly journals Characterization of Extended-Spectrum β-Lactamases (ESBLs)-Producing Klebsiella Pneumoniae Strains in Captive Giant Pandas

Author(s):  
Xiaoyan Su ◽  
Xia Yan ◽  
Yunli Li ◽  
Dongsheng Zhang ◽  
Lin Li ◽  
...  

Abstract Background: Extended-spectrum β-lactamases (ESBLs)-producing strains of Klebsiella pneumoniae remain a critical clinical concern in the world. However, limited information is available concerning ESBLs-producing K. pneumoniae in giant pandas. The objective of this study was to characterize ESBLs-producing K. pneumoniae isolates from the giant panda. A total of 211 K. pneumoniae isolates were collected from 108 giant pandas housed at the Chengdu Research Base of Giant Panda Breeding, China. Samples were screened for the ESBLs-producing phenotype via the double-disk synergy test method. Result: A total of three (1.42%, n = 211) ESBLs-producing K. pneumoniae strains were identified and subjected to MLST (Multi-locus Sequence Typing) analysis for the characterization of ESBLs-encoding genes, transposons, antimicrobial resistance genes, and antimicrobial susceptibility. Among the three ESBLs-producing isolates, different ESBLs-encoding genes, including blaCTX-M-1, blaSHV, and blaTEM were detected. Three isolates were found to carry transposons (i.e., aac6-ib and tnpU) and antimicrobial resistance genes (i.e., aac6-ib, tnpU, aac6-1, qnrA, and qnrB). Furthermore, these three isolates were resistant to at least 15 antibiotics and had different ST isotypes (ST37, ST290, and ST2640). Conclusion: Effective surveillance and strict infection control strategies should be implemented to prevent outbreaks of ESBLs-producing K. pneumoniae in giant panda.

2021 ◽  
Vol 9 (3) ◽  
pp. 378-387
Author(s):  
Mohsin Razzaq Azeez ◽  
◽  
Ahmed Abduljabbar Jaloob Aljanaby ◽  
Ilkay Corak Ocal ◽  
◽  
...  

The current study was carried out for the phenotypic and genotypic characterization of five antimicrobial resistance-associated genes in Klebsiella pneumoniae isolated from burn infection patients. Total one hundred three (103) bacterial samples (strains) were isolated from the 103 burn infection patients admitted at Middle Euphrates Burns Center of AL-Kufa City Iraq. Out of total isolated bacterial samples (103), there were 31 isolates (30%) identified as Pseudomonas sp., 23 isolates (22.3%) as K. pneumonia, 22 isolates as Staphylococcus sps. (21.4%), 11 isolates as E. coli (10.6%), 8 isolates as Acinetobacter sps. (7.8%), 5 isolates as Enterobacter sps. (4.9%), while the lowest prevalence (3 isolates) was reported for the Proteus spp. (3%). The antimicrobial sensitivity test indicated that all isolated K. pneumoniae have resistant (100%) against standard antibiotic Amoxicillin. While Imipenem is the only antibiotic that can inhibit the growth of all 23 isolates. Further, according to the phenotypic detection method, there were 14 isolates (61%) capable of production of extended spectrum beta lactamase (ESBL). Genotypic method to detect the presence of five antibiotic resistance genes by polymerase chain reaction proved that 13 isolates (56.5%) were Tem gene, 18 isolates (78.2%) were positive for Shv gene, 8 isolates (34.7%) were positive Ctxm gene, three isolates (13%) were positive for Oxa gene and 10 isolates (43.7%) positive for AmpC gene. Results of the study can be concluded that K. pneumoniae is the second causative agent that causes burn infection and has higher antibiotics resistance. Extended spectrum beta lactamase of K. pneumoniae was higher prevalence in burn infection and harbored many beta lactamase genes.


2021 ◽  
Vol 65 (2) ◽  
pp. 147-154
Author(s):  
Rui Zhong ◽  
Ziyao Zhou ◽  
Haifeng Liu ◽  
Zhijun Zhong ◽  
Guangneng Peng

Abstract Introduction The objective of this study was to determine the prevalence and characteristics of antimicrobial-resistant Enterococcus faecalis and E. faecium isolated from the oral cavities of captive giant pandas in China. Material and Methods The virulence-associated determinant and antimicrobial resistance genes were detected and antimicrobial susceptibility tests were performed on 54 strains of each bacterium. Results All isolates showed 100% multidrug resistance. E. faecalis isolates showed a higher percentage of strains resistant to gentamicin (48.1%), vancomycin (55.6%), linezolid (100%), and streptomycin (33.3%) than E. faecium isolates. The resistance genes of Enterococcus spp. were present to highly varying extents according to antibiotic type, their presence breaking down for E. faecalis and E. faecium respectively as aac(6')/aph(2″) 5.56% and 5.56%; aph(3')-Ⅲ 0% and 14.81%; ant(6)-I 0% and 3.7%; ant(4')-Ia 0% and 64.81%; tetL 20.37% and 100%; vanA 92.59% and 46.3%; vanB 0% and 0%; cfr 0% and 90.74%; optrA 96.3% and 3.7%; blaZ 0% and 1.85%; blaTEM 0% and 0%; tetA 20.37% and 0%; tetC 24.07% and 100%; tetM 0% and 0%; ermA 12.96% and 100%; ermB 5.56% and 3.7%; and ermC 0% and 1.85%.Virulence-associated determinants were detected in this research, which typically include efaA, gelE, asa1, ace, cylA, esp and hyl; however, the latter three were not detected. High proportions of the isolates carried the efaA, gelE, asa1, and ace genes. Respectively for E. faecalis and E. faecium their detection was efaA 98.1% and 85.2%; gelE 98.1% and 87%; asa1 92.6% and 87%; and ace 87% and 85.2%. Conclusion This is the first study on the potential disease risk and antimicrobial-resistant characteristics of E. faecalis and E. faecium isolates in giant panda oral cavities. The results of this study show that the antimicrobial resistance rate of Enterococcus spp. isolated from the oral cavity of captive pandas is very high, and thus needs to be monitored.


2020 ◽  
Vol 67 (4) ◽  
pp. 460-466
Author(s):  
Katherine E. L. Worsley‐Tonks ◽  
Elizabeth A. Miller ◽  
Stanley D. Gehrt ◽  
Shane C. McKenzie ◽  
Dominic A. Travis ◽  
...  

2007 ◽  
Vol 51 (8) ◽  
pp. 3004-3007 ◽  
Author(s):  
Ying-Tsong Chen ◽  
Tsai-Ling Lauderdale ◽  
Tsai-Lien Liao ◽  
Yih-Ru Shiau ◽  
Hung-Yu Shu ◽  
...  

ABSTRACT A 269-kilobase conjugative plasmid, pK29, from a Klebsiella pneumoniae strain was sequenced. The plasmid harbors multiple antimicrobial resistance genes, including those encoding CMY-8 AmpC-type and CTX-M-3 extended-spectrum β-lactamases in the common backbone of IncHI2 plasmids. Mechanisms for dissemination of the resistance genes are highlighted in comparative genomic analyses.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
R. V. Pereira ◽  
C. Foditsch ◽  
J. D. Siler ◽  
S. C. Dulièpre ◽  
C. Altier ◽  
...  

Abstract The objective of this study was to evaluate the longitudinal effect of enrofloxacin or tulathromycin use in calves at high risk of bovine respiratory disease (BRD) on antimicrobial resistance genes and mutation in quinolone resistance-determining regions (QRDR) in fecal E. coli. Calves at high risk of developing BRD were randomly enrolled in one of three groups receiving: (1) enrofloxacin (ENR; n = 22); (2) tulathromycin (TUL; n = 24); or (3) no treatment (CTL; n = 21). Fecal samples were collected at enrollment and at 7, 28, and 56 days after beginning treatment, cultured for Escherichiacoli (EC) and DNA extracted. Isolates were screened for cephalosporin, quinolone and tetracycline resistance genes using PCR. QRDR screening was conducted using Sanger sequencing. The only resistance genes detected were aac(6′)Ib-cr (n = 13), bla-CTX-M (n = 51), bla-TEM (n = 117), tetA (n = 142) and tetB (n = 101). A significantly higher detection of gyrA mutated at position 248 at time points 7 (OR = 11.5; P value = 0.03) and 28 (OR = 9.0; P value = 0.05) was observed in the ENR group when compared to calves in the control group. Our findings support a better understanding of the potential impacts from the use of enrofloxacin in calves on the selection and persistence of resistance.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Weihua Huang ◽  
Guiqing Wang ◽  
Robert Sebra ◽  
Jian Zhuge ◽  
Changhong Yin ◽  
...  

ABSTRACT The extended-spectrum-β-lactamase (ESBL)- and Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae represent serious and urgent threats to public health. In a retrospective study of multidrug-resistant K. pneumoniae, we identified three clinical isolates, CN1, CR14, and NY9, carrying both bla CTX-M and bla KPC genes. The complete genomes of these three K. pneumoniae isolates were de novo assembled by using both short- and long-read whole-genome sequencing. In CR14 and NY9, bla CTX-M and bla KPC were carried on two different plasmids. In contrast, CN1 had one copy of bla KPC-2 and three copies of bla CTX-M-15 integrated in the chromosome, for which the bla CTX-M-15 genes were linked to an insertion sequence, ISEcp1, whereas the bla KPC-2 gene was in the context of a Tn4401a transposition unit conjugated with a PsP3-like prophage. Intriguingly, downstream of the Tn4401a-bla KPC-2-prophage genomic island, CN1 also carried a clustered regularly interspaced short palindromic repeat (CRISPR)-cas array with four spacers targeting a variety of K. pneumoniae plasmids harboring antimicrobial resistance genes. Comparative genomic analysis revealed that there were two subtypes of type I-E CRISPR-cas in K. pneumoniae strains and suggested that the evolving CRISPR-cas, with its acquired novel spacer, induced the mobilization of antimicrobial resistance genes from plasmids into the chromosome. The integration and dissemination of multiple copies of bla CTX-M and bla KPC from plasmids to chromosome depicts the complex pandemic scenario of multidrug-resistant K. pneumoniae. Additionally, the implications from this study also raise concerns for the application of a CRISPR-cas strategy against antimicrobial resistance.


2019 ◽  
Vol 25 (4) ◽  
pp. 475-479 ◽  
Author(s):  
João Pedro Rueda Furlan ◽  
Danilo Garcia Sanchez ◽  
Inara Fernanda Lage Gallo ◽  
Eliana Guedes Stehling

Sign in / Sign up

Export Citation Format

Share Document