scholarly journals Exosomal miR-218-5p/miR-363-3p from Endothelial Progenitor Cells Ameliorate Myocardial Infarction by Targeting the P53/JMY Signaling Pathway

Author(s):  
Xiao Ke ◽  
Rongfeng Yang ◽  
Fang Wu ◽  
Xing Wang ◽  
Jiawen Liang ◽  
...  

Abstract BackgroundAccumulating evidence has shown that endothelial progenitor cell-derived exosomes (EPC-Exos) can ameliorate myocardial fibrosis. The purpose of the present study was to investigate the effects of EPC-Exos-derived microRNAs (miRNAs) on myocardial infarction (MI). MethodsA miRNA-Seq dataset of miRNAs differentially expressed between EPCs and exosomes was collected. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the miRNA expression indicated by miRNA-Seq. Immunofluorescence, cell proliferation and angiogenesis assays were employed to investigate the effects of miRNAs on cardiac fibroblasts (CFs) in vitro. Interactions between miRNAs and their respective targets were examined via immunoblotting, qRT-PCR and luciferase reporter assays. An MI rat model was constructed, and various staining and immunohistochemical assays were performed to explore the mechanisms underlying the miRNA-mediated effects on MI. ResultsmiR-363-3p and miR-218-5p were enriched in EPC-Exos, and miR-218-5p and miR-363-3p mimic or inhibitor enhanced or suppressed CF proliferation and angiogenesis, respectively. miR-218-5p and miR-363-3p regulated P53 and junction-mediating and regulatory protein (JMY) by binding to the promoter region of P53 and the 3’ untranslated region of JMY. Additionally, treatment of CFs with exo-miR-218-5p or miR-363-3p mimic upregulated P53 and down-regulated JMY expression, promoted mesenchymal-endothelial transition and inhibited myocardial fibrosis. Administration of exosomes containing miR-218-5p mimic or miR-363-3p mimic ameliorated left coronary artery ligation-induced MI and restored myocardial tissue integrity in the MI model rats. ConclusionsIn summary, these results show that the protective ability of EPC-Exos against MI was mediated by the shuttled miR-218-5p or miR-363-3p via targeting of the P53/JMY signaling pathway.

2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Xiao Ke ◽  
Rongfeng Yang ◽  
Fang Wu ◽  
Xing Wang ◽  
Jiawen Liang ◽  
...  

Accumulating evidence has shown that endothelial progenitor cell-derived exosomes (EPC-Exos) can ameliorate myocardial fibrosis. The purpose of the present study was to investigate the effects of EPC-Exos-derived microRNAs (miRNAs) on myocardial infarction (MI). A miRNA-Seq dataset of miRNAs differentially expressed between EPCs and exosomes was collected. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the miRNA expression indicated by miRNA-Seq. Immunofluorescence, cell proliferation, and angiogenesis assays were employed to investigate the effects of miRNAs on cardiac fibroblasts (CFs) in vitro. Interactions between miRNAs and their respective targets were examined via immunoblotting, qRT-PCR, and luciferase reporter assays. An MI rat model was constructed, and various staining and immunohistochemical assays were performed to explore the mechanisms underlying the miRNA-mediated effects on MI. miR-363-3p and miR-218-5p were enriched in EPC-Exos, and miR-218-5p and miR-363-3p mimic or inhibitor enhanced or suppressed CF proliferation and angiogenesis, respectively. miR-218-5p and miR-363-3p regulated p53 and junction-mediating and regulatory protein (JMY) by binding to the promoter region of p53 and the 3 ′ untranslated region of JMY. Additionally, treatment of CFs with Exo-miR-218-5p or Exo-miR-363-3p upregulated p53 and downregulated JMY expression, promoted mesenchymal-endothelial transition, and inhibited myocardial fibrosis. Administration of exosomes containing miR-218-5p mimic or miR-363-3p mimic ameliorated left coronary artery ligation-induced MI and restored myocardial tissue integrity in the MI model rats. In summary, these results show that the protective ability of EPC-Exos against MI was mediated by the shuttled miR-218-5p or miR-363-3p via targeting of the p53/JMY signaling pathway.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Lingling Chang ◽  
Zhijun Wang ◽  
Fenfen Ma ◽  
Bahieu Tran ◽  
Rui Zhong ◽  
...  

Acute myocardial infarction (AMI) is a leading cause of morbidity and mortality worldwide, and both cardiac necroptosis and endoplasmic reticulum stress (ERS) have been involved in the pathophysiology of AMI. ZYZ-803 is a hybrid molecule of a dual donor for gasotransmitters H2S and NO. The aim of the present study is to investigate the antinecroptosis role and potential mechanisms of ZYZ-803 in the setting of ERS during AMI injury. In vivo, ZYZ-803 preserves cardiac function and reduces infarct size significantly after 24-hour left coronary artery ligation through revising H2S and NO imbalance. In addition, ZYZ-803 relieves ERS and necroptosis in an AMI heart. In vitro, ZYZ-803 ameliorates ERS-related necroptosis induced by tunicamycin, and such effect has been depending on the receptor-interacting protein 3- (RIP3-) Ca2+-calmodulin-dependent protein kinase (CaMKII) signaling pathway. These findings have identified a novel antinecroptosis potential of ZYZ-803, providing a valuable candidate for cardioprotection in acute myocardial ischemia.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lianghe Wen ◽  
Minnan Wang ◽  
Peiyao Luo ◽  
Xianglin Meng ◽  
Mingyan Zhao

Myocardial infarction- (MI-) induced myocardial damage is mainly attributed to the loss of cardiomyocytes. Pyroptosis is a newly recognized form of programmed cell necrosis that is associated with the progression of MI. Melatonin has been shown to exert cardioprotective effects against cardiac damage in multiple cardiovascular diseases. However, the effect of melatonin on pyroptosis-induced cardiac injury in MI has not been elucidated. Herein, we found that melatonin administration ameliorated cardiac dysfunction and reduced cardiomyocyte death both in mice following coronary artery ligation and in H9C2 cells exposed to hypoxia. The results also showed that pyroptosis was induced both in vivo and in vitro, as evidenced by increased NLRP3, cleaved caspase-1, GSDMD-N, and mature IL-1β and IL-18 levels, and these changes were decreased by melatonin treatment. Furthermore, we observed that TLR4 and NF-κB levels were increased by MI or hypoxia, and these increases were reversed by melatonin. The antipyroptotic action of melatonin was abrogated by treatment with an agonist of the TLR4/NF-κB signaling pathway. Our results indicate that melatonin can exert cardioprotective effects by inhibiting NLRP3 inflammasome-induced pyroptosis through modulation of the TLR4/NF-κB signaling pathway and provide strong evidence for the utility of melatonin in the treatment of MI.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Vasundhara Kain ◽  
Kevin A Ingle ◽  
Janusz Kabarowski ◽  
Sumanth D Prabhu ◽  
Ganesh V Halade

12/15 lipoxygenase (LOX) is crucial in the inflammatory process leading to diabetes and atherosclerosis. However, the role of 12/15 LOX in myocardial infarction (MI) and left ventricle (LV) remodeling is unclear. We assessed the role of 12/15 LOX in resolving inflammation in post-MI LV remodeling. 8-12 weeks old C57BL/6J wild-type (WT; n=67) and 12/15 LOX (LOX –/– ; n=78) male mice were subjected to permanent coronary artery ligation surgery and monitored through day (d)1 and d5. No MI surgery mice were maintained as d0 naïve controls. LOX -/- mice showed higher survival rate, improved fractional shortening with reduced remodeling and edema index than WT at d1 and d5 post-MI (all p<0.05). LOX -/- mice showed increased Cxcl5 expression at d1 post-MI, consistent with stimulated neutrophil recruitment in the infarct region that was decreased at d5 compared to WT. LOX -/- mice infarct had increased expression of Ccl2 and Cxcl1, that stimulated an earlier recruitment of monocytes with increased macrophages population at d5 (all p<0.05) compared to WT. The altered kinetics of immune cells post-MI indicates a rapid resolving phase, through increase in alternative macrophage phenotypes with reduced collagen density in LOX -/- mice compared to WT mice at d5 post-MI. LOX -/- mice showed a coordinated COX-1 and COX-2 response at d1 post MI, leading to an evident increase in 5-LOX and hemoxygenase-1 (HO-1) at d5 post-MI. 12/15 LOX deletion enhanced the recruitment of alternative macrophages with secretion of HO-1 to resolve inflammation. In-vitro addition of LOX metabolite 12 hydroxyeicosatetraenoic acid to LOX -/- fibroblast induced early expression of COX-2 and 5-LOX compared to WT, indicating 5LOX role in resolution of inflammation. Post-MI increased expression of TIMP-1 and decrease in MMP-9 at d1 and α-SMA at d5 in LOX -/- mice suggested controlled differentiation of fibroblast-to-myofibroblast which is key event during ventricular tissue repair and resolving phase. This change is supported by increased expression of tgf-βi, ctgf and admats-2 (all P<0.05) at d5 post MI. In conclusion, absence of 12/15 LOX improves post-MI survival rates and attenuates LV dysfunction by resolving inflammation through coordination of 5-LOX and HO-1 as key inflammation resolving enzymes.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Wei He ◽  
Lunan Zhang ◽  
Richard E Pratt ◽  
Victor J Dzau

Myocardial infarction and post-infarction remodeling with heart failure are the major cause of mortality and morbidity in the United States. We recently reported that intracardiac implantation of genetically engineered mesenchymal stem cell (MSC) overexpressing the Akt gene dramatically reduced the infarct size and restored cardiac functions in rodent hearts after coronary artery ligation. Further, we identified Secreted Frizzled Related Protein 2 (sfrp2) as a key factor released by Akt-MSC mediating myocardial survival and repair. However, the underlying mechanism remains elusive. Bone Morphogenetic Protein1 (BMP1)/Tolloid (TLD)-like metalloproteinases belong to a subgroup of astacin family and play key roles in the regulation of extracelluar matrix (ECM) formation and cardiac fibrosis. These proteases have procollagen C-proteinase (PCP) activities which are responsible for the cleavage of C-propeptides from procollagen precursors to produce mature collagen fibrils. In this report, we showed that three days following myocardial infarction in rats, both BMP1 protein expression and activity were upregulated in the infarcted left ventricle. Interestingly, we found recombinant sfrp2 could inhibit BMP1 activity in MI tissue samples as measured by an in vitro PCP activity assay. Furthermore, using purified recombinant proteins, we demonstrated that sfrp2, but not sfrp1 or sfrp3, inhibited BMP-1 activity in vitro. Moreover, purified sfrp2 could physically interact with BMP1 protein as shown by the co-immunoprecipitation assay. To provide further evidence that sfrp2 can interfere with collagen processing, we demonstrated that exogenously added sfrp2 interfered with procollagen processing in primary cultures of cardiac fibroblast culture medium. Similar results were obtained when these cells were transiently transfected with sfrp2 expressing plasmids. In summary, our data suggest that one of the molecular mechanisms underlying the cardioprotective and repair effects of sfrp2 protein on myocardial infarction is through the inhibition of BMP-1 activity. Therefore, sfrp2 has the potential clinical application as a novel anti-fibrotic reagent for the modulation of cardiac remodeling after acute myocardial infarction.


2017 ◽  
Vol 44 (4) ◽  
pp. 1497-1508 ◽  
Author(s):  
Lu Gao ◽  
Yuan Liu ◽  
Sen Guo ◽  
Rui Yao ◽  
Leiming Wu ◽  
...  

Background/Aims: Acute myocardial infarction (AMI) is one of the leading causes of death in the world. However, specific diagnostic biomarkers have not been fully determined, and candidate regulatory targets for AMI have not been identified to date. Long noncoding RNAs (lncRNAs) are a class of RNA molecules that have diverse regulatory functions during embryonic development, normal life, and disease in higher organisms. However, research on the role of lncRNAs in cardiovascular diseases, particularly AMI, is still in its infancy. HOX antisense intergenic RNA (HOTAIR), a 2.2 kb lncRNA, was initially described as a modulator of HOX gene expression. Recent studies have illustrated the important role of HOTAIR in cancer progression, but few studies have reported its function in cardiac disease, including AMI. In the current study, we aimed to detect the expression of HOTAIR during AMI and to explore its function in hypoxia-induced cardiomyocyte injury in neonatal cardiomyocytes. Methods: In 50 consecutively enrolled AMI patients, we examined the serum expression levels of HOTAIR and analysed its correlation with cardiac troponin I (cTnI) expression. Another 50 age- and sex-matched subjects served as healthy controls. Next, the HOTAIR expression was detected in the serum from C57BL/6J mice subjected to coronary artery ligation and in neonatal rat cardiomyocytes induced by hypoxia. Cultured cardiomyocytes apoptosis were measured by terminal deoxynucleotide transferase dUTP nick end labelling (TUNEL) staining. A search for miRNAs that had complementary base paring with HOTAIR was performed utilizing an online software program, and the interaction between miR-1 and HOTAIR was examined using a luciferase reporter assay. Results: Our study revealed that HOTAIR expression was significantly decreased in the serum of AMI patients compared with that of the healthy controls. Similarly, we observed that HOTAIR was downregulated in the serum of mice subjected to coronary artery ligation and in cultured cardiomyocytes exposed to hypoxia. Furthermore, we observed that the adenovirus vector-driven overexpression of HOTAIR dramatically limited hypoxia-induced myocyte apoptosis, whereas knockdown HOTAIR by AdshHOTAIR (adenoviral short hairpin HOTAIR) exhibited the opposite phenotype. Mechanistically, we discovered that the cardioprotective function of HOTAIR is partly based on the negative regulation of miR-1. Conclusions: Taken together, the results of our study suggest that HOTAIR is a protective factor for cardiomyocytes and that the plasma concentration of HOTAIR may serve as a biomarker for human AMI diagnosis.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Benjamin Vogel ◽  
Hisahito Shinagawa ◽  
Ullrich Hofmann ◽  
Georg Ertl ◽  
Stefan Frantz

Rationale: Myocardial infarction (MI) leads to necrosis of multinucleated and polyploid myocytes. This causes uncontrolled release of cellular content like chromatin to the infarct area. Chromatin is mainly comprised of histones which are essential for controlling and packing of DNA but paradoxically are also known to be cytotoxic. This makes free chromatin a toxic DNA polymer creating local high concentrations of hazardous histones. Objective: We hypothesized that chromatin from necrotic cells accumulates in ischemic myocardium, creates local high concentrations of cytotoxic histones, and thereby potentiates ischemic damage to the heart after MI. The endonuclease DNase1 is capable of dispersing extracellular chromatin through linker DNA digestion and could decrease local histone concentrations and cytotoxicity. Methods and Results: After permanent coronary artery ligation in mice we found extracellular histones accumulated within the infarcted myocardium. Histone cytotoxicity towards isolated myocytes was confirmed in vitro. To reduce histone related cytotoxicity in vivo DNase1 was injected within the first 6 hours after induction of MI. DNase1 accumulated in the infarcted region of the heart, effectively disrupted extracellular cytotoxic chromatin and thereby reduced high local histone concentration. Animals acutely treated with DNase1 revealed significantly improved left ventricular remodeling as measured by serial echocardiography up to 28 days after MI (e.g. NaCl vs DNase1, papillary end diastolic area [mm 2 ]: 23.26 ± 2.06 vs 18.90 ± 1.24, n=9 vs 10, p<0,05). Treatment did not influence mortality, infarct size or inflammatory parameters as determined by neutrophil infiltration and RTQ-PCR analysis of characteristic cytokines. However improved myocyte survival was discovered within the infarct region which might account for the protective effects in DNase1 treated animals (NaCl vs DNase1: 3.0 ± 0.7% vs 8.3 ± 2.3%; p<0.05; n=7 vs 8). Conclusions: Targeting extracellular cytotoxic chromatin within the infarcted heart by DNase1 is a promising approach to preserve myocytes from histone induced cell death and to conserve left ventricular function after MI. The efficacy of other chromatin degrading agents is now under investigation.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shuai He ◽  
Jian Shen ◽  
Liangpeng Li ◽  
Yueyue Xu ◽  
Yide Cao ◽  
...  

Autophagy of cardiomyocytes after myocardial infarction (MI) is an important factor affecting the prognosis of MI. Excessive autophagy can lead to massive death of cardiomyocytes, which will seriously affect cardiac function. IKKε plays a crucial role in the occurrence of autophagy, but the functional role in MI remains largely unknown. To evaluate the impact of IKKε on the autophagy of cardiomyocytes after MI, MI was induced by surgical left anterior descending coronary artery ligation in IKKε knockout (KO) mice and wild-type (WT) mice. Starvation of H9c2 cells with IKKε siRNA and rescued with IKKε overexpressed afterwards to test the mechanism of IKKε in autophagy in vitro. Our results demonstrated that the expression of IKKε was upregulated in mice myocardial tissues which were consistent with cardiomyocyte autophagy after MI. Significantly, the IKKε KO mice showed increased infarct size, decreased viable cardiomyocytes, and exacerbated cardiac dysfunction when compared with the wild-type mice. Western blot and electron micrography analysis also revealed that loss of IKKε induces excessive cardiomyocyte autophagy and reduced the expression of p-Akt and p-mTOR. Similar results were observed in IKKε siRNA H9c2 cells in vitro which were under starvation injury. Notably, the levels of p-Akt and p-mTOR can restore in IKKε rescued cells. In conclusion, our results indicated that IKKε protects cardiomyocyte survival by reduced autophagy following MI via regulation of the Akt/mTOR signaling pathway. Thus, our study suggests that IKKε might represent a potential therapeutic target for the treatment of MI.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Zheng Yang ◽  
Qing-Qing Wu ◽  
Yang Xiao ◽  
Ming Xia Duan ◽  
Chen Liu ◽  
...  

Whether aucubin could protect myocardial infarction- (MI-) induced cardiac remodeling is not clear. In this study, in a mouse model, cardiac remodeling was induced by left anterior descending coronary artery ligation surgery. Mice were intraperitoneally injected with aucubin (10 mg/kg) 3 days post-MI. Two weeks post-MI, mice in the aucubin treatment group showed decreased mortality, decreased infarct size, and improved cardiac function. Aucubin also decreased cardiac remodeling post-MI. Consistently, aucubin protected cardiomyocytes against hypoxic injury in vitro. Mechanistically, we found that aucubin inhibited the ASK1/JNK signaling. These effects were abolished by the JNK activator. Moreover, we found that the oxidative stress was attenuated in both in vivo aucubin-treated mice heart and in vitro-treated cardiomyocytes, which caused decreased thioredoxin (Trx) consumption, leading to ASK1 forming the inactive complex with Trx. Aucubin increased nNOS-derived NO production in vivo and vitro. The protective effects of aucubin were reversed by the NOS inhibitors L-NAME and L-VINO in vitro. Furthermore, nNOS knockout mice also reversed the protective effects of aucubin on cardiac remodeling. Taken together, aucubin protects against cardiac remodeling post-MI through activation of the nNOS/NO pathway, which subsequently attenuates the ROS production, increases Trx preservation, and leads to inhibition of the ASK1/JNK pathway.


2016 ◽  
Vol 310 (1) ◽  
pp. C41-C53 ◽  
Author(s):  
Jie Yin ◽  
Hesheng Hu ◽  
Xiaolu Li ◽  
Mei Xue ◽  
Wenjuan Cheng ◽  
...  

Inflammation-dominated sympathetic sprouting adjacent to the necrotic region following myocardial infarction (MI) has been implicated in the etiology of arrhythmias resulting in sudden cardiac death; however, the mechanisms responsible remain to be elucidated. Although being a key immune mediator, the role of Notch has yet to be explored. We investigated whether Notch regulates macrophage responses to inflammation and affects cardiac sympathetic reinnervation in rats undergoing MI. MI was induced by coronary artery ligation. A high level of Notch intracellular domain was observed in the macrophages that infiltrated the infarct area at 3 days post-MI. The administration of the Notch inhibitor N-N-(3,5-difluorophenacetyl-l-alanyl)-S-phenylglycine-t-butyl ester (DAPT) (intravenously 30 min before MI and then daily until death) decreased the number of macrophages and significantly increased the M2 macrophage activation profile in the early stages and attenuated the expression of nerve growth factor (NGF). Eventually, NGF-induced sympathetic hyperinnervation was blunted, as assessed by the immunofluorescence of tyrosine hydroxylase. At 7 days post-MI, the arrhythmia score of programmed electric stimulation in the vehicle-treated infarcted rats was higher than that in rats treated with DAPT. Further deterioration in cardiac function and decreases in the plasma levels of TNF-α and IL-1β were also detected. In vitro studies revealed that LPS/IFN-γ upregulated the surface expression of NGF in M1 macrophages in a Notch-dependent manner. We concluded that Notch inhibition during the acute inflammatory response phase is associated with the downregulation of NGF, probably through a macrophage-dependent pathway, thus preventing the process of sympathetic hyperinnervation.


Sign in / Sign up

Export Citation Format

Share Document