scholarly journals Melatonin Exerts Cardioprotective Effects by Inhibiting NLRP3 Inflammasome-Induced Pyroptosis in Mice following Myocardial Infarction

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lianghe Wen ◽  
Minnan Wang ◽  
Peiyao Luo ◽  
Xianglin Meng ◽  
Mingyan Zhao

Myocardial infarction- (MI-) induced myocardial damage is mainly attributed to the loss of cardiomyocytes. Pyroptosis is a newly recognized form of programmed cell necrosis that is associated with the progression of MI. Melatonin has been shown to exert cardioprotective effects against cardiac damage in multiple cardiovascular diseases. However, the effect of melatonin on pyroptosis-induced cardiac injury in MI has not been elucidated. Herein, we found that melatonin administration ameliorated cardiac dysfunction and reduced cardiomyocyte death both in mice following coronary artery ligation and in H9C2 cells exposed to hypoxia. The results also showed that pyroptosis was induced both in vivo and in vitro, as evidenced by increased NLRP3, cleaved caspase-1, GSDMD-N, and mature IL-1β and IL-18 levels, and these changes were decreased by melatonin treatment. Furthermore, we observed that TLR4 and NF-κB levels were increased by MI or hypoxia, and these increases were reversed by melatonin. The antipyroptotic action of melatonin was abrogated by treatment with an agonist of the TLR4/NF-κB signaling pathway. Our results indicate that melatonin can exert cardioprotective effects by inhibiting NLRP3 inflammasome-induced pyroptosis through modulation of the TLR4/NF-κB signaling pathway and provide strong evidence for the utility of melatonin in the treatment of MI.

2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Lingling Chang ◽  
Zhijun Wang ◽  
Fenfen Ma ◽  
Bahieu Tran ◽  
Rui Zhong ◽  
...  

Acute myocardial infarction (AMI) is a leading cause of morbidity and mortality worldwide, and both cardiac necroptosis and endoplasmic reticulum stress (ERS) have been involved in the pathophysiology of AMI. ZYZ-803 is a hybrid molecule of a dual donor for gasotransmitters H2S and NO. The aim of the present study is to investigate the antinecroptosis role and potential mechanisms of ZYZ-803 in the setting of ERS during AMI injury. In vivo, ZYZ-803 preserves cardiac function and reduces infarct size significantly after 24-hour left coronary artery ligation through revising H2S and NO imbalance. In addition, ZYZ-803 relieves ERS and necroptosis in an AMI heart. In vitro, ZYZ-803 ameliorates ERS-related necroptosis induced by tunicamycin, and such effect has been depending on the receptor-interacting protein 3- (RIP3-) Ca2+-calmodulin-dependent protein kinase (CaMKII) signaling pathway. These findings have identified a novel antinecroptosis potential of ZYZ-803, providing a valuable candidate for cardioprotection in acute myocardial ischemia.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Zheng Yang ◽  
Qing-Qing Wu ◽  
Yang Xiao ◽  
Ming Xia Duan ◽  
Chen Liu ◽  
...  

Whether aucubin could protect myocardial infarction- (MI-) induced cardiac remodeling is not clear. In this study, in a mouse model, cardiac remodeling was induced by left anterior descending coronary artery ligation surgery. Mice were intraperitoneally injected with aucubin (10 mg/kg) 3 days post-MI. Two weeks post-MI, mice in the aucubin treatment group showed decreased mortality, decreased infarct size, and improved cardiac function. Aucubin also decreased cardiac remodeling post-MI. Consistently, aucubin protected cardiomyocytes against hypoxic injury in vitro. Mechanistically, we found that aucubin inhibited the ASK1/JNK signaling. These effects were abolished by the JNK activator. Moreover, we found that the oxidative stress was attenuated in both in vivo aucubin-treated mice heart and in vitro-treated cardiomyocytes, which caused decreased thioredoxin (Trx) consumption, leading to ASK1 forming the inactive complex with Trx. Aucubin increased nNOS-derived NO production in vivo and vitro. The protective effects of aucubin were reversed by the NOS inhibitors L-NAME and L-VINO in vitro. Furthermore, nNOS knockout mice also reversed the protective effects of aucubin on cardiac remodeling. Taken together, aucubin protects against cardiac remodeling post-MI through activation of the nNOS/NO pathway, which subsequently attenuates the ROS production, increases Trx preservation, and leads to inhibition of the ASK1/JNK pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Xiao Ke ◽  
Rongfeng Yang ◽  
Fang Wu ◽  
Xing Wang ◽  
Jiawen Liang ◽  
...  

Accumulating evidence has shown that endothelial progenitor cell-derived exosomes (EPC-Exos) can ameliorate myocardial fibrosis. The purpose of the present study was to investigate the effects of EPC-Exos-derived microRNAs (miRNAs) on myocardial infarction (MI). A miRNA-Seq dataset of miRNAs differentially expressed between EPCs and exosomes was collected. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the miRNA expression indicated by miRNA-Seq. Immunofluorescence, cell proliferation, and angiogenesis assays were employed to investigate the effects of miRNAs on cardiac fibroblasts (CFs) in vitro. Interactions between miRNAs and their respective targets were examined via immunoblotting, qRT-PCR, and luciferase reporter assays. An MI rat model was constructed, and various staining and immunohistochemical assays were performed to explore the mechanisms underlying the miRNA-mediated effects on MI. miR-363-3p and miR-218-5p were enriched in EPC-Exos, and miR-218-5p and miR-363-3p mimic or inhibitor enhanced or suppressed CF proliferation and angiogenesis, respectively. miR-218-5p and miR-363-3p regulated p53 and junction-mediating and regulatory protein (JMY) by binding to the promoter region of p53 and the 3 ′ untranslated region of JMY. Additionally, treatment of CFs with Exo-miR-218-5p or Exo-miR-363-3p upregulated p53 and downregulated JMY expression, promoted mesenchymal-endothelial transition, and inhibited myocardial fibrosis. Administration of exosomes containing miR-218-5p mimic or miR-363-3p mimic ameliorated left coronary artery ligation-induced MI and restored myocardial tissue integrity in the MI model rats. In summary, these results show that the protective ability of EPC-Exos against MI was mediated by the shuttled miR-218-5p or miR-363-3p via targeting of the p53/JMY signaling pathway.


2021 ◽  
Author(s):  
Xiao Ke ◽  
Rongfeng Yang ◽  
Fang Wu ◽  
Xing Wang ◽  
Jiawen Liang ◽  
...  

Abstract BackgroundAccumulating evidence has shown that endothelial progenitor cell-derived exosomes (EPC-Exos) can ameliorate myocardial fibrosis. The purpose of the present study was to investigate the effects of EPC-Exos-derived microRNAs (miRNAs) on myocardial infarction (MI). MethodsA miRNA-Seq dataset of miRNAs differentially expressed between EPCs and exosomes was collected. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the miRNA expression indicated by miRNA-Seq. Immunofluorescence, cell proliferation and angiogenesis assays were employed to investigate the effects of miRNAs on cardiac fibroblasts (CFs) in vitro. Interactions between miRNAs and their respective targets were examined via immunoblotting, qRT-PCR and luciferase reporter assays. An MI rat model was constructed, and various staining and immunohistochemical assays were performed to explore the mechanisms underlying the miRNA-mediated effects on MI. ResultsmiR-363-3p and miR-218-5p were enriched in EPC-Exos, and miR-218-5p and miR-363-3p mimic or inhibitor enhanced or suppressed CF proliferation and angiogenesis, respectively. miR-218-5p and miR-363-3p regulated P53 and junction-mediating and regulatory protein (JMY) by binding to the promoter region of P53 and the 3’ untranslated region of JMY. Additionally, treatment of CFs with exo-miR-218-5p or miR-363-3p mimic upregulated P53 and down-regulated JMY expression, promoted mesenchymal-endothelial transition and inhibited myocardial fibrosis. Administration of exosomes containing miR-218-5p mimic or miR-363-3p mimic ameliorated left coronary artery ligation-induced MI and restored myocardial tissue integrity in the MI model rats. ConclusionsIn summary, these results show that the protective ability of EPC-Exos against MI was mediated by the shuttled miR-218-5p or miR-363-3p via targeting of the P53/JMY signaling pathway.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3322 ◽  
Author(s):  
Xuguang Li ◽  
Tianyi Yuan ◽  
Di Chen ◽  
Yucai Chen ◽  
Shuchan Sun ◽  
...  

Puerarin is a well-known traditional Chinese medicine which has been used for the treatment of cardiovascular diseases. Recently, a new advantageous crystal form of puerarin, puerarin-V, has been developed. However, the cardioprotective effects of puerarin-V on myocardial infarction (MI) heart failure are still unclear. In this research, we aim to evaluate the cardioprotective effects of puerarin-V on the isoproterenol (ISO)-induced MI mice and elucidate the underlying mechanisms. To induce MI in C57BL/6 mice, ISO was administered at 40 mg/kg subcutaneously every 12 h for three times in total. The mice were randomly divided into nine groups: (1) control; (2) ISO; (3) ISO + puerarin injection; (4–9) ISO + puerarin-V at different doses and timings. After treatment, cardiac function was evaluated by electrocardiogram (ECG), biochemical and histochemical analysis. In vitro inflammatory responses and apoptosis were evaluated in human coronary artery endothelial cells (HCAECs) challenged by lipopolysaccharide (LPS). LPS-induced PPAR-Υ/NF-κB and subsequently activation of cytokines were assessed by the western blot and real-time polymerase chain reaction (PCR). Administration of puerarin-V significantly inhibits the typical ST segment depression compared with that in MI mice. Further, puerarin-V treatment significantly improves ventricular wall infarction, decreases the incidence of mortality, and inhibits the levels of myocardial injury markers. Moreover, puerarin-V treatment reduces the inflammatory milieu in the heart of MI mice, thereby blocking the upregulation of proinflammatory cytokines (TNF-α, IL-1β and IL-6). The beneficial effects of puerarin-V might be associated with the normalization in gene expression of PPAR-Υ and PPAR-Υ/NF-κB /ΙκB-α/ΙΚΚα/β phosphorylation. In the in vitro experiment, treatment with puerarin-V (0.3, 1 and 3 μM) significantly reduces cell death and suppresses the inflammation cytokines expression. Likewise, puerarin-V exhibits similar mechanisms. The cardioprotective effects of puerarin-V treatment on MI mice in the pre + post-ISO group seem to be more prominent compared to those in the post-ISO group. Puerarin-V exerts cardioprotective effects against ISO-induced MI in mice, which may be related to the activation of PPAR-γ and the inhibition of NF-κB signaling in vivo and in vitro. Taken together, our research provides a new therapeutic option for the treatment of MI in clinic.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Vasundhara Kain ◽  
Kevin A Ingle ◽  
Janusz Kabarowski ◽  
Sumanth D Prabhu ◽  
Ganesh V Halade

12/15 lipoxygenase (LOX) is crucial in the inflammatory process leading to diabetes and atherosclerosis. However, the role of 12/15 LOX in myocardial infarction (MI) and left ventricle (LV) remodeling is unclear. We assessed the role of 12/15 LOX in resolving inflammation in post-MI LV remodeling. 8-12 weeks old C57BL/6J wild-type (WT; n=67) and 12/15 LOX (LOX –/– ; n=78) male mice were subjected to permanent coronary artery ligation surgery and monitored through day (d)1 and d5. No MI surgery mice were maintained as d0 naïve controls. LOX -/- mice showed higher survival rate, improved fractional shortening with reduced remodeling and edema index than WT at d1 and d5 post-MI (all p<0.05). LOX -/- mice showed increased Cxcl5 expression at d1 post-MI, consistent with stimulated neutrophil recruitment in the infarct region that was decreased at d5 compared to WT. LOX -/- mice infarct had increased expression of Ccl2 and Cxcl1, that stimulated an earlier recruitment of monocytes with increased macrophages population at d5 (all p<0.05) compared to WT. The altered kinetics of immune cells post-MI indicates a rapid resolving phase, through increase in alternative macrophage phenotypes with reduced collagen density in LOX -/- mice compared to WT mice at d5 post-MI. LOX -/- mice showed a coordinated COX-1 and COX-2 response at d1 post MI, leading to an evident increase in 5-LOX and hemoxygenase-1 (HO-1) at d5 post-MI. 12/15 LOX deletion enhanced the recruitment of alternative macrophages with secretion of HO-1 to resolve inflammation. In-vitro addition of LOX metabolite 12 hydroxyeicosatetraenoic acid to LOX -/- fibroblast induced early expression of COX-2 and 5-LOX compared to WT, indicating 5LOX role in resolution of inflammation. Post-MI increased expression of TIMP-1 and decrease in MMP-9 at d1 and α-SMA at d5 in LOX -/- mice suggested controlled differentiation of fibroblast-to-myofibroblast which is key event during ventricular tissue repair and resolving phase. This change is supported by increased expression of tgf-βi, ctgf and admats-2 (all P<0.05) at d5 post MI. In conclusion, absence of 12/15 LOX improves post-MI survival rates and attenuates LV dysfunction by resolving inflammation through coordination of 5-LOX and HO-1 as key inflammation resolving enzymes.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Raffay S Khan ◽  
Jay C Sy ◽  
Milton Brown ◽  
Mario D Martinez ◽  
Niren Murthy ◽  
...  

During acute myocardial infarction (MI) there is excessive necrosis of myocardial cells, leading to the release of large amounts of DNA, representing a potential target for drug delivery. Hoechst, a commonly used molecule for staining nuclei, binds to the minor groove of double-stranded DNA and can be functionalized to contain reactive groups such as free amines, sulfhydryls, and biotin moieties. Insulin-like growth factor-1 (IGF-1), a small molecule with a short half-life is protective immediately following MI, though there is potential for long-term toxicity and off-target effects. Therefore, we hypothesized that conjugating IGF-1 to Hoechst would increase targeting of IGF-1 to the injured myocardium. Hoechst-IGF1 (H-IGF1) was synthesized by binding Hoechst-biotin to biotinylated IGF-1 via a fluorescent streptavidin linker. Intact cells did not show nuclear staining with H-IGF1, while permeabilized cells had a significant increase in blue fluorescent Hoechst staining, indicating H-IGF1 was cell impermeable but could still bind DNA. Activity of H-IGF1 was demonstrated by Akt phosphorylation in cultured cardiac progenitor cells and was similar to native IGF-1. To determine in-vivo targeting of H-IGF1 to MI, mice underwent 30 minutes of coronary artery ligation followed by reperfusion (I/R). Six hours following MI, mice were injected intravenously with 70ng of H-IGF1, S-IGF1 (streptavidin bound IGF-1 only) or PBS followed by in vivo imaging at 30 and 120 minutes post-injection. At 30 minutes post-injection, we found 3.2% (2.2 of 70ng) of the injected dose of H-IGF1 in infarcted hearts compared with 1.8% (1.3 of 70ng) of S-IGF1 (n=5-7; p<0.05). To confirm that targeting of H-IGF1 was dependent on binding DNA, H-IGF1 pre-bound to double-stranded DNA was injected intravenously after I/R. This led to a significant (p<0.05) decrease in targeted IGF-1 levels. IGF-1 levels determined by ELISA 2 hours post-injection demonstrated a similar trend with increased targeting of H-IGF1 compared with S-IGF1 treated mice (4.2±0.6 ng vs. 2.4±0.2 ng; p<0.05). In conclusion, our data demonstrate that intravenous delivery of Hoechst-conjugated IGF-1 increases myocardial targeting. This provides a novel strategy for delivery of growth factors for the treatment of MI.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Wei He ◽  
Lunan Zhang ◽  
Richard E Pratt ◽  
Victor J Dzau

Myocardial infarction and post-infarction remodeling with heart failure are the major cause of mortality and morbidity in the United States. We recently reported that intracardiac implantation of genetically engineered mesenchymal stem cell (MSC) overexpressing the Akt gene dramatically reduced the infarct size and restored cardiac functions in rodent hearts after coronary artery ligation. Further, we identified Secreted Frizzled Related Protein 2 (sfrp2) as a key factor released by Akt-MSC mediating myocardial survival and repair. However, the underlying mechanism remains elusive. Bone Morphogenetic Protein1 (BMP1)/Tolloid (TLD)-like metalloproteinases belong to a subgroup of astacin family and play key roles in the regulation of extracelluar matrix (ECM) formation and cardiac fibrosis. These proteases have procollagen C-proteinase (PCP) activities which are responsible for the cleavage of C-propeptides from procollagen precursors to produce mature collagen fibrils. In this report, we showed that three days following myocardial infarction in rats, both BMP1 protein expression and activity were upregulated in the infarcted left ventricle. Interestingly, we found recombinant sfrp2 could inhibit BMP1 activity in MI tissue samples as measured by an in vitro PCP activity assay. Furthermore, using purified recombinant proteins, we demonstrated that sfrp2, but not sfrp1 or sfrp3, inhibited BMP-1 activity in vitro. Moreover, purified sfrp2 could physically interact with BMP1 protein as shown by the co-immunoprecipitation assay. To provide further evidence that sfrp2 can interfere with collagen processing, we demonstrated that exogenously added sfrp2 interfered with procollagen processing in primary cultures of cardiac fibroblast culture medium. Similar results were obtained when these cells were transiently transfected with sfrp2 expressing plasmids. In summary, our data suggest that one of the molecular mechanisms underlying the cardioprotective and repair effects of sfrp2 protein on myocardial infarction is through the inhibition of BMP-1 activity. Therefore, sfrp2 has the potential clinical application as a novel anti-fibrotic reagent for the modulation of cardiac remodeling after acute myocardial infarction.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Changsheng Nai ◽  
Haochen Xuan ◽  
Yingying Zhang ◽  
Mengxiao Shen ◽  
Tongda Xu ◽  
...  

The flavonoid luteolin exists in many types of fruits, vegetables, and medicinal herbs. Our previous studies have demonstrated that luteolin reduced ischemia/reperfusion (I/R) injury in vitro, which was related with sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) activity. However, the effects of luteolin on SERCA2a activity during I/R in vivo remain unclear. To investigate whether luteolin exerts cardioprotective effects and to monitor changes in SERCA2a expression and activity levels in vivo during I/R, we created a myocardial I/R rat model by ligating the coronary artery. We demonstrated that luteolin could reduce the myocardial infarct size, lactate dehydrogenase release, and apoptosis during I/R injury in vivo. Furthermore, we found that luteolin inhibited the I/R-induced decrease in SERCA2a activity in vivo. However, neither I/R nor luteolin altered SERCA2a expression levels in myocardiocytes. Moreover, the PI3K/Akt signaling pathway played a vital role in this mechanism. In conclusion, the present study has confirmed for the first time that luteolin yields cardioprotective effects against I/R injury by inhibiting the I/R-induced decrease in SERCA2a activity partially via the PI3K/Akt signaling pathway in vivo, independent of SERCA2a protein level regulation. SERCA2a activity presents a novel biomarker to assess the progress of I/R injury in experimental research and clinical applications.


Sign in / Sign up

Export Citation Format

Share Document