scholarly journals Angiopoietin 1 release from Human Neutrophils is Independent from Neutrophil Extracellular Traps (NETs)

Author(s):  
Elcha Charles ◽  
Benjamin Dumont ◽  
Steven Bonneau ◽  
Paul-Eduard Neagoe ◽  
Louis Villeneuve ◽  
...  

Abstract Background: Neutrophils induce the synthesis and release of angiopoietin 1 (Ang1), a cytosolic growth factor involved in angiogenesis and capable of inducing several pro-inflammatory activities in neutrophils. Neutrophils also synthesize and release neutrophil extracellular traps (NETs), comprised from decondensed nuclear DNA filaments carrying proteins such as neutrophil elastase (NE), myeloperoxidase (MPO), proteinase 3 (PR3) and calprotectin (S100A8/S100A9), which together, contribute to the innate immune response against pathogens (e.g., bacteria). NETs are involved in various pathological conditions through pro-inflammatory, pro-thrombotic and endothelial dysfunction effects and have recently been found in heart failure (HF) and type 2 diabetes (T2DM) patients. The aim of the present study was to investigate the role of NETs on the synthesis and release of Ang1 by the neutrophils in patients with T2DM and HF with preserved ejection fraction (HFpEF) (stable or acute decompensated; ADHFpEF) with or without T2DM. Results: Our data show that at basal level (PBS) and upon treatment with LPS, levels of NETs are slightly increased in patients suffering from T2DM, HFpEF ± T2DM and ADHF w/o T2DM, whereas this increase was significant in ADHFpEF + T2DM patients compared to healthy control (HC) volunteers and ADHFpEF without T2DM. We also observed that treatments with PMA or A23187 increase the synthesis of Ang1 (from 150 to 250%) in HC and this effect is amplified in T2DM and in all cohorts of HF patients. Ang1 is completely released (100%) by neutrophils of all groups and does not bind to NETs as opposed to calprotectin. Conclusions: Our study suggests that severely ill patients with HFpEF and diabetes synthesize and release a greater abundance of NETs while Ang1 exocytosis is independent of NETs synthesis.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Elcha Charles ◽  
Benjamin L. Dumont ◽  
Steven Bonneau ◽  
Paul-Eduard Neagoe ◽  
Louis Villeneuve ◽  
...  

Abstract Background Neutrophils induce the synthesis and release of angiopoietin 1 (Ang1), a cytosolic growth factor involved in angiogenesis and capable of inducing several pro-inflammatory activities in neutrophils. Neutrophils also synthesize and release neutrophil extracellular traps (NETs), comprised from decondensed nuclear DNA filaments carrying proteins such as neutrophil elastase (NE), myeloperoxidase (MPO), proteinase 3 (PR3) and calprotectin (S100A8/S100A9), which together, contribute to the innate immune response against pathogens (e.g., bacteria). NETs are involved in various pathological conditions through pro-inflammatory, pro-thrombotic and endothelial dysfunction effects and have recently been found in heart failure (HF) and type 2 diabetes (T2DM) patients. The aim of the present study was to investigate the role of NETs on the synthesis and release of Ang1 by the neutrophils in patients with T2DM and HF with preserved ejection fraction (HFpEF) (stable or acute decompensated; ADHFpEF) with or without T2DM. Results Our data show that at basal level (PBS) and upon treatment with LPS, levels of NETs are slightly increased in patients suffering from T2DM, HFpEF ± T2DM and ADHF without (w/o) T2DM, whereas this increase was significant in ADHFpEF + T2DM patients compared to healthy control (HC) volunteers and ADHFpEF w/o T2DM. We also observed that treatments with PMA or A23187 increase the synthesis of Ang1 (from 150 to 250%) in HC and this effect is amplified in T2DM and in all cohorts of HF patients. Ang1 is completely released (100%) by neutrophils of all groups and does not bind to NETs as opposed to calprotectin. Conclusions Our study suggests that severely ill patients with HFpEF and diabetes synthesize and release a greater abundance of NETs while Ang1 exocytosis is independent of NETs synthesis.


2019 ◽  
Vol 77 (15) ◽  
pp. 3059-3075 ◽  
Author(s):  
Aneta Manda-Handzlik ◽  
Weronika Bystrzycka ◽  
Adrianna Cieloch ◽  
Eliza Glodkowska-Mrowka ◽  
Ewa Jankowska-Steifer ◽  
...  

Abstract Despite great interest, the mechanism of neutrophil extracellular traps (NETs) release is not fully understood and some aspects of this process, e.g. the role of reactive nitrogen species (RNS), still remain unclear. Therefore, our aim was to investigate the mechanisms underlying RNS-induced formation of NETs and contribution of RNS to NETs release triggered by various physiological and synthetic stimuli. The involvement of RNS in NETs formation was studied in primary human neutrophils and differentiated human promyelocytic leukemia cells (HL-60 cells). RNS (peroxynitrite and nitric oxide) efficiently induced NETs release and potentiated NETs-inducing properties of platelet activating factor and lipopolysaccharide. RNS-induced NETs formation was independent of autophagy and histone citrullination, but dependent on the activity of phosphoinositide 3-kinases (PI3K) and myeloperoxidase, as well as selective degradation of histones H2A and H2B by neutrophil elastase. Additionally, NADPH oxidase activity was required to release NETs upon stimulation with NO, as shown in NADPH-deficient neutrophils isolated from patients with chronic granulomatous disease. The role of RNS was further supported by increased RNS synthesis upon stimulation of NETs release with phorbol 12-myristate 13-acetate and calcium ionophore A23187. Scavenging or inhibition of RNS formation diminished NETs release triggered by these stimuli while scavenging of peroxynitrite inhibited NO-induced NETs formation. Our data suggest that RNS may act as mediators and inducers of NETs release. These processes are PI3K-dependent and ROS-dependent. Since inflammatory reactions are often accompanied by nitrosative stress and NETs formation, our studies shed a new light on possible mechanisms engaged in various immune-mediated conditions.


2021 ◽  
Vol 22 (16) ◽  
pp. 8854
Author(s):  
Monika Szturmowicz ◽  
Urszula Demkow

Neutrophil extracellular traps (NETs), built from mitochondrial or nuclear DNA, proteinases, and histones, entrap and eliminate pathogens in the course of bacterial or viral infections. Neutrophils’ activation and the formation of NETs have been described as major risk factors for acute lung injury, multi-organ damage, and mortality in COVID-19 disease. NETs-related lung injury involves both epithelial and endothelial cells, as well as the alveolar-capillary barrier. The markers for NETs formation, such as circulating DNA, neutrophil elastase (NE) activity, or myeloperoxidase-DNA complexes, were found in lung specimens of COVID-19 victims, as well as in sera and tracheal aspirates obtained from COVID-19 patients. DNA threads form large conglomerates causing local obstruction of the small bronchi and together with NE are responsible for overproduction of mucin by epithelial cells. Various components of NETs are involved in the pathogenesis of cytokine storm in SARS-CoV-2 pulmonary disease. NETs are responsible for the interplay between inflammation and thrombosis in the affected lungs. The immunothrombosis, stimulated by NETs, has a poor prognostic significance. Better understanding of the role of NETs in the course of COVID-19 can help to develop novel approaches to the therapeutic interventions in this condition.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1424-1424
Author(s):  
François-René Bertin ◽  
Sandrine Laurance ◽  
Catherine Lemarie ◽  
Mark Blostein

Abstract Thrombosis is considered to be a pathological deviation of physiologic hemostasis involving similar mechanisms. Interestingly, recent work demonstrates that innate immune cells promote venous thrombosis. Innate immune cells were shown to collaborate to induce the activation of the coagulation cascade and platelets. In particular, neutrophils contribute to venous thrombosis through the release of neutrophil extracellular traps (NETs). However, the mechanism triggering the formation of NETs during venous thrombosis remain unknown. Of interest, a study showed that IFNγ induced the formation of NETs. Thus, we investigated the role of IFNγ-producing cells in the development of thrombosis. We used mice lacking IFNγ, Tbet (the transcription factor regulating the expression of IFNγ) or wild type mice. Venous thrombosis was induced using the flow restriction model in the inferior vena cava , as has been previously published. In Tbet-/-, IFNγ-/- and WT mice, we show that the absence of Tbet or IFNγ decreases the formation of thrombi after venous thrombosis induction, suggesting that the Tbet+/IFNγ producing cells are required for the early development of venous thrombosis. Comparing the composition of the thrombi from Tbet-/-, IFNγ-/- and WT mice, we show that, in all mice, neutrophils are the main cellular component of thrombi followed by monocytes; however, the number of neutrophil extracellular traps (NETs) formed during thrombosis is significantly lower in Tbet-/- and IFNγ-/- mice. Furthermore, NET formation is also decreased in WT mice specifically depleted of IFNγ and increases in Tbet-/- and IFNγ-/- mice injected with recombinant IFNγ. In vitro, we show that stimulation of WT murine neutrophils with recombinant IFNγ triggers the formation of NETs demonstrating that Tbet and IFNγ are crucial for NET formation by neutrophils. Natural killer (NK) cells are the main producers of IFNγ . Thus, we investigated the role of NK cells in venous thrombosis induced by flow restriction. NK cells were specifically depleted with an antibody during the development of venous thrombosis. The absence of NK cells results in smaller thrombi suggesting that NK cells are required for early thrombus development. Additionally, depletion in NK cells results in decreased in-situ IFNγ production and decreased NET formation. To directly link NK cells to the formation of NETs, WT neutrophils were co-cultured with Tbet-/- and IFNγ-/- NK cells. We show that WT neutrophils release less NETs when cultured with Tbet-/- and IFNγ-/- NK cells as compared to WT NK cells. These data suggest that NK cells trigger the formation of NETs by neutrophils through the production of IFNγ. Hence, we demonstrate that, in a partial flow restriction model of venous thrombosis, Tbet and IFNγ are crucial for thrombus development by promoting the formation of NETs by neutrophils and that NK cells are key effector cells in this process. Disclosures Blostein: boehringer-ingelheim: Research Funding.


Rheumatology ◽  
2020 ◽  
Author(s):  
Ayda Henriques Schneider ◽  
Caio Cavalcante Machado ◽  
Flávio Protásio Veras ◽  
Alexandre Gomes de Macedo Maganin ◽  
Flávio Falcão Lima de Souza ◽  
...  

Abstract Objective To evaluate the role of neutrophil extracellular traps (NETs) in the genesis of joint hyperalgesia using an experimental model of arthritis and transpose the findings to clinical investigation. Methods C57BL/6 mice were subjected to antigen-induced arthritis (AIA) and treated with Pulmozyme (PLZ) to degrade NETs or Cl-amidine to inhibit NET production. Oedema formation, the histopathological score and mechanical hyperalgesia were evaluated. NETs were injected intra-articularly in wild type (WT), Tlr4−/−, Tlr9−/−, Tnfr1−/− and Il1r−/− mice, and the levels of cytokines and Cox2 expression were quantified. NETs were also quantified from human neutrophils isolated from RA patients and individual controls. Results AIA mice had increased NET concentration in joints, accompanied by increased Padi4 gene expression in the joint cells. Treatment of AIA mice with a peptidyl arginine deiminase 4 inhibitor or with PLZ inhibited the joint hyperalgesia. Moreover, the injection of NETs into joints of naïve animals generated a dose-dependent reduction of mechanical threshold, an increase of articular oedema, inflammatory cytokine production and cyclooxygenase-2 expression. In mice deficient for Tnfr1, Il1r, Tlr4 and Tlr9, joint hyperalgesia induced by NETs was prevented. Last, we found that neutrophils from RA patients were more likely to release NETs, and the increase in synovial fluid NET concentration correlated with an increase in joint pain. Conclusion The findings indicate that NETs cause hyperalgesia possibly through Toll-like receptor (TLR)-4 and TLR-9. These data support the idea that NETs contribute to articular pain, and this pathway can be an alternative target for the treatment of pain in RA.


2014 ◽  
Vol 82 (4) ◽  
pp. 1732-1740 ◽  
Author(s):  
Anderson B. Guimarães-Costa ◽  
Thiago S. DeSouza-Vieira ◽  
Rafael Paletta-Silva ◽  
Anita Leocádio Freitas-Mesquita ◽  
José Roberto Meyer-Fernandes ◽  
...  

ABSTRACTLeishmaniasis is a widespread neglected tropical disease caused by parasites of theLeishmaniagenus. These parasites express the enzyme 3′-nucleotidase/nuclease (3′NT/NU), which has been described to be involved in parasite nutrition and infection. Bacteria that express nucleases escape the toxic effects of neutrophil extracellular traps (NETs). Hence, we investigated the role of 3′NT/NU inLeishmaniasurvival of NET-mediated killing. Promastigotes ofLeishmania infantumwere cultured in high-phosphate (HP) or low-phosphate (LP) medium to modulate nuclease activity. We compared the survival of the two different groups ofLeishmaniaduring interaction with human neutrophils, assessing the role of neutrophil extracellular traps. As previously reported, we detected higher nuclease activity in parasites cultured in LP medium. Both LP and HP promastigotes were capable of inducing the release of neutrophil extracellular traps from human neutrophils in a dose- and time-dependent manner. LP parasites had 2.4 times more survival than HP promastigotes. NET disruption was prevented by the treatment of the parasites with ammonium tetrathiomolybdate (TTM), a 3′NT/NU inhibitor. Inhibition of 3′NT/NU by 3′-AMP, 5′-GMP, or TTM decreased promastigote survival upon interaction with neutrophils. Our results show thatLeishmania infantuminduces NET release and that promastigotes can escape NET-mediated killing by 3′-nucleotidase/nuclease activity, thus ascribing a new function to this enzyme.


Acta Naturae ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 15-23
Author(s):  
Dmitry V. Volkov ◽  
George V. Tetz ◽  
Yury P. Rubtsov ◽  
Alexey V. Stepanov ◽  
Alexander G. Gabibov

Antitumor therapy, including adoptive immunotherapy, inevitably faces powerful counteraction from advanced cancer. If hematological malignancies are currently amenable to therapy with CAR-T lymphocytes (T-cells modified by the chimeric antigen receptor), solid tumors, unfortunately, show a significantly higher degree of resistance to this type of therapy. As recent studies show, the leading role in the escape of solid tumors from the cytotoxic activity of immune cells belongs to the tumor microenvironment (TME). TME consists of several types of cells, including neutrophils, the most numerous cells of the immune system. Recent studies show that the development of the tumor and its ability to metastasize directly affect the extracellular traps of neutrophils (neutrophil extracellular traps, NETs) formed as a result of the response to tumor stimuli. In addition, the nuclear DNA of neutrophils the main component of NETs erects a spatial barrier to the interaction of CAR-T with tumor cells. Previous studies have demonstrated the promising potential of deoxyribonuclease I (DNase I) in the destruction of NETs. In this regard, the use of eukaryotic deoxyribonuclease I (DNase I) is promising in the effort to increase the efficiency of CAR-T by reducing the NETs influence in TME. We will examine the role of NETs in TME and the various approaches in the effort to reduce the effect of NETs on a tumor.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anton Früh ◽  
Katharina Tielking ◽  
Felix Schoknecht ◽  
Shuheng Liu ◽  
Ulf C. Schneider ◽  
...  

Background: Subarachnoid hemorrhage (SAH) caused by rupture of an intracranial aneurysm, is a life-threatening emergency that is associated with substantial morbidity and mortality. Emerging evidence suggests involvement of the innate immune response in secondary brain injury, and a potential role of neutrophil extracellular traps (NETs) for SAH-associated neuroinflammation. In this study, we investigated the spatiotemporal patterns of NETs in SAH and the potential role of the RNase A (the bovine equivalent to human RNase 1) application on NET burden.Methods: A total number of n=81 male C57Bl/6 mice were operated utilizing a filament perforation model to induce SAH, and Sham operation was performed for the corresponding control groups. To confirm the bleeding and exclude stroke and intracerebral hemorrhage, the animals received MRI after 24h. Mice were treated with intravenous injection of RNase A (42μg/kg body weight) or saline solution for the control groups, respectively. Quadruple-immunofluorescence (IF) staining for cell nuclei (DAPI), F-actin (phalloidin), citrullinated H3, and neurons (NeuN) was analyzed by confocal imaging and used to quantify NET abundance in the subarachnoid space (SAS) and brain parenchyma. To quantify NETs in human SAH patients, cerebrospinal spinal fluid (CSF) and blood samples from day 1, 2, 7, and 14 after bleeding onset were analyzed for double-stranded DNA (dsDNA) via Sytox Green.Results: Neutrophil extracellular traps are released upon subarachnoid hemorrhage in the SAS on the ipsilateral bleeding site 24h after ictus. Over time, NETs showed progressive increase in the parenchyma on both ipsi- and contralateral site, peaking on day 14 in periventricular localization. In CSF and blood samples of patients with aneurysmal SAH, NETs also increased gradually over time with a peak on day 7. RNase application significantly reduced NET accumulation in basal, cortical, and periventricular areas.Conclusion: Neutrophil extracellular trap formation following SAH originates in the ipsilateral SAS of the bleeding site and spreads gradually over time to basal, cortical, and periventricular areas in the parenchyma within 14days. Intravenous RNase application abrogates NET burden significantly in the brain parenchyma, underpinning a potential role in modulation of the innate immune activation after SAH.


2021 ◽  
Vol 11 ◽  
Author(s):  
Bo-Zong Shao ◽  
Yi Yao ◽  
Jin-Ping Li ◽  
Ning-Li Chai ◽  
En-Qiang Linghu

Neutrophils are vital components of innate and adaptive immunity. It is widely acknowledged that in various pathological conditions, neutrophils are activated and release condensed DNA strands, triggering the formation of neutrophil extracellular traps (NETs). NETs have been shown to be effective in fighting against microbial infections and modulating the pathogenesis and progression of diseases, including malignant tumors. This review describes the current knowledge on the biological characteristics of NETs. Additionally, the mechanisms of NETs in cancer are discussed, including the involvement of signaling pathways and the crosstalk between other cancer-related mechanisms, including inflammasomes and autophagy. Finally, based on previous and current studies, the roles of NET formation and the potential therapeutic targets and strategies related to NETs in several well-studied types of cancers, including breast, lung, colorectal, pancreatic, blood, neurological, and cutaneous cancers, are separately reviewed and discussed.


2017 ◽  
Vol 23 (5) ◽  
pp. 413-423 ◽  
Author(s):  
Ihsan Ullah ◽  
Neil D Ritchie ◽  
Tom J Evans

Neutrophils play an important role in the innate immune response to infection with Streptococcus pneumoniae, the pneumococcus. Pneumococci are phagocytosed by neutrophils and undergo killing after ingestion. Other cellular processes may also be induced, including autophagy and the formation of neutrophil extracellular traps (NETs), which may play a role in bacterial eradication. We set out to determine how these different processes interacted following pneumococcal infection of neutrophils, and the role of the major pneumococcal toxin pneumolysin in these various pathways. We found that pneumococci induced autophagy in neutrophils in a type III phosphatidylinositol-3 kinase dependent fashion that also required the autophagy gene Atg5. Pneumolysin did not affect this process. Phagocytosis was inhibited by pneumolysin but enhanced by autophagy, while killing was accelerated by pneumolysin but inhibited by autophagy. Pneumococci induced extensive NET formation in neutrophils that was not influenced by pneumolysin but was critically dependent on autophagy. While pneumolysin did not affect NET formation, it had a potent inhibitory effect on bacterial trapping within NETs. These findings show a complex interaction between phagocytosis, killing, autophagy and NET formation in neutrophils following pneumococcal infection that contribute to host defence against this pathogen.


Sign in / Sign up

Export Citation Format

Share Document