scholarly journals Effects of elevated CO2 levels on lung immune response to organic dust and lipopolysaccaride

Author(s):  
David Schneberger ◽  
Upkardeep Singh Pandher ◽  
Brooke Thompson ◽  
Shelley Kirychuk

Abstract Workplaces with elevated organic dust levels such as animal feed barns also commonly have elevated levels of gasses, such as CO2. Workers exposed to such complex environments often experience respiratory effects that may be due to a combination of respirable factors. We examined the effects of CO2 at the ASHRAE recommended limit (1000 ppm) as well as the EPA 8hr time weighted average limit (5000 ppm) on lung innate immune responses in mice with exposure to inflammatory lipopolysaccharide and organic dust. Mice were nasally instilled with dust extracts or LPS and immediately put into chambers with a constant flow of room air (approx. 430 ppm CO2), 1000 ppm, or 5000 ppm CO2 enriched air. Organic dust exposures tended to show decreased inflammatory responses with 1000 ppm CO2 and increased responses at 5000 ppm CO2. Conversely, LPS with addition of CO2 as low as 1000 ppm tended to inhibit several inflammatory markers. In most cases saline treated animals showed few changes with CO2 exposure, though some changes in mRNA levels were present. This shows that CO2 as low as 1000 ppm CO2 was capable of altering innate immune responses to both LPS and organic dust extracts, but each response was altered in a different fashion.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
David Schneberger ◽  
Upkardeep Pandher ◽  
Brooke Thompson ◽  
Shelley Kirychuk

AbstractWorkplaces with elevated organic dust levels such as animal feed barns also commonly have elevated levels of gasses, such as CO2. Workers exposed to such complex environments often experience respiratory effects that may be due to a combination of respirable factors. We examined the effects of CO2 on lung innate immune responses in mice co-exposed to the inflammatory agents lipopolysaccharide (LPS) and organic dust. We evaluated CO2 levels at the building recommended limit (1000 ppm) as well as the exposure limit (5000 ppm). Mice were nasally instilled with dust extracts or LPS and immediately put into chambers with a constant flow of room air (avg. 430 ppm CO2), 1000 ppm, or 5000 ppm CO2 enriched air. Results reveal that organic dust exposures tended to show decreased inflammatory responses with 1000 ppm CO2 and increased responses at 5000 ppm CO2. Conversely, LPS with addition of CO2 as low as 1000 ppm tended to inhibit several inflammatory markers. In most cases saline treated animals showed few changes with CO2 exposure, though some changes in mRNA levels were present. This shows that CO2 as low as 1000 ppm CO2 was capable of altering innate immune responses to both LPS and organic dust extracts, but each response was altered in a different fashion.


2018 ◽  
Vol 19 (10) ◽  
pp. 3003 ◽  
Author(s):  
Debora Giordano ◽  
Claudio Pinto ◽  
Luca Maroni ◽  
Antonio Benedetti ◽  
Marco Marzioni

Cholangiocytes, the epithelial cells lining the bile ducts, represent the unique target of a group of progressive diseases known as cholangiopathies whose pathogenesis remain largely unknown. In normal conditions, cholangiocytes are quiescent and participate to the final bile volume and composition. Following exogenous or endogenous stimuli, cholangiocytes undergo extensive modifications of their phenotype. Reactive cholangiocytes actively proliferate and release a set of proinflammatory molecules, which act in autocrine/paracrine manner mediating the cross-talk with other liver cell types and innate and adaptive immune cells. Cholangiocytes themselves activate innate immune responses against gut-derived microorganisms or bacterial products that reach the liver via enterohepatic circulation. Gut microbiota has been implicated in the development and progression of the two most common cholangiopathies, i.e., primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), which have distinctive microbiota composition compared to healthy individuals. The impairment of intestinal barrier functions or gut dysbiosis expose cholangiocytes to an increasing amount of microorganisms and may exacerbate inflammatory responses thus leading to fibrotic remodeling of the organ. The present review focuses on the complex interactions between the activation of innate immune responses in reactive cholangiocytes, dysbiosis, and gut permeability to bacterial products in the pathogenesis of PSC and PBC.


2020 ◽  
Author(s):  
Tobias Vahsen ◽  
Laura Zapata ◽  
Rodrigo Guabiraba ◽  
Elise Melloul ◽  
Nathalie Cordonnier ◽  
...  

Abstract Across the world, many commercial poultry flocks and captive birds are threatened by infection with Aspergillus fumigatus. Susceptibility to aspergillosis varies among birds; among galliform birds specifically, morbidity and mortality rates seem to be greater in turkeys than in chickens. Little is known regarding the features of avian immune responses after inhalation of Aspergillus conidia, and to date, scarce information on inflammatory responses during aspergillosis exists. Thus, in the present study, we aimed to improve our understanding of the interactions between A. fumigatus and economically relevant galliform birds in terms of local innate immune responses. Intra-tracheal aerosolization of A. fumigatus conidia in turkey and chicken poults led to more severe clinical signs and lung lesions in turkeys, but leukocyte recovery from lung lavages was higher in chickens at 1dpi only. Interestingly, only chicken CD8+ T lymphocyte proportions increased after infection. Furthermore, the lungs of infected chickens showed an early upregulation of pro-inflammatory cytokines, including IL-1β, IFN-γ and IL-6, whereas in turkeys, most of these cytokines showed a downregulation or a delayed upregulation. These results confirmed the importance of an early pro-inflammatory response to ensure the development of an appropriate anti-fungal immunity to avoid Aspergillus dissemination in the respiratory tract. In conclusion, we show for the first time that differences in local innate immune responses between chickens and turkeys during aspergillosis may determine the outcome of the disease. Lay Summary Aspergillus fumigatus infection may cause mortality in poultry, depending on species sensitivity. This study confirms the earlier activation of chickens’ pro-inflammatory effectors to control Aspergillus dissemination, whereas turkeys’ immune response enables the exacerbation of lung lesions.


2008 ◽  
Vol 205 (3) ◽  
pp. 685-698 ◽  
Author(s):  
Sébastien Conus ◽  
Remo Perozzo ◽  
Thomas Reinheckel ◽  
Christoph Peters ◽  
Leonardo Scapozza ◽  
...  

In the resolution of inflammatory responses, neutrophils rapidly undergo apoptosis. We describe a new proapoptotic pathway in which cathepsin D directly activates caspase-8. Cathepsin D is released from azurophilic granules in neutrophils in a caspase-independent but reactive oxygen species–dependent manner. Under inflammatory conditions, the translocation of cathepsin D in the cytosol is blocked. Pharmacological or genetic inhibition of cathepsin D resulted in delayed caspase activation and reduced neutrophil apoptosis. Cathepsin D deficiency or lack of its translocation in the cytosol prolongs innate immune responses in experimental bacterial infection and in septic shock. Thus, we identified a new function of azurophilic granules that is in addition to their role in bacterial defense mechanisms: to regulate the life span of neutrophils and, therefore, the duration of innate immune responses through the release of cathepsin D.


2021 ◽  
Vol 22 (24) ◽  
pp. 13232
Author(s):  
Wanglong Zheng ◽  
Nengwen Xia ◽  
Jiajia Zhang ◽  
Nanhua Chen ◽  
François Meurens ◽  
...  

The cGAS–STING pathway is a key component of the innate immune system and exerts crucial roles in the detection of cytosolic DNA and invading pathogens. Accumulating evidence suggests that the intrinsic cGAS–STING pathway not only facilitates the production of type I interferons (IFN-I) and inflammatory responses but also triggers autophagy. Autophagy is a homeostatic process that exerts multiple effects on innate immunity. However, systematic evidence linking the cGAS–STING pathway and autophagy is still lacking. Therefore, one goal of this review is to summarize the known mechanisms of autophagy induced by the cGAS–STING pathway and their consequences. The cGAS–STING pathway can trigger canonical autophagy through liquid-phase separation of the cGAS–DNA complex, interaction of cGAS and Beclin-1, and STING-triggered ER stress–mTOR signaling. Furthermore, both cGAS and STING can induce non-canonical autophagy via LC3-interacting regions and binding with LC3. Subsequently, autophagy induced by the cGAS–STING pathway plays crucial roles in balancing innate immune responses, maintaining intracellular environmental homeostasis, alleviating liver injury, and limiting tumor growth and transformation.


2019 ◽  
Vol 295 (6) ◽  
pp. 1575-1586 ◽  
Author(s):  
Zhihua Qin ◽  
Serena Bonifati ◽  
Corine St. Gelais ◽  
Tai-Wei Li ◽  
Sun-Hee Kim ◽  
...  

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphohydrolase (dNTPase) with a nuclear localization signal (NLS). SAMHD1 suppresses innate immune responses to viral infection and inflammatory stimuli by inhibiting the NF-κB and type I interferon (IFN-I) pathways. However, whether the dNTPase activity and nuclear localization of SAMHD1 are required for its suppression of innate immunity remains unknown. Here, we report that the dNTPase activity, but not nuclear localization of SAMHD1, is important for its suppression of innate immune responses in differentiated monocytic cells. We generated monocytic U937 cell lines stably expressing WT SAMHD1 or mutated variants defective in dNTPase activity (HD/RN) or nuclear localization (mNLS). WT SAMHD1 in differentiated U937 cells significantly inhibited lipopolysaccharide-induced expression of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) mRNAs, as well as IFN-α, IFN-β, and TNF-α mRNA levels induced by Sendai virus infection. In contrast, the HD/RN mutant did not exhibit this inhibition in either U937 or THP-1 cells, indicating that the dNTPase activity of SAMHD1 is important for suppressing NF-κB activation. Of note, in lipopolysaccharide-treated or Sendai virus–infected U937 or THP-1 cells, the mNLS variant reduced TNF-α or IFN-β mRNA expression to a similar extent as did WT SAMHD1, suggesting that SAMHD1-mediated inhibition of innate immune responses is independent of SAMHD1's nuclear localization. Moreover, WT and mutant SAMHD1 similarly interacted with key proteins in NF-κB and IFN-I pathways in cells. This study further defines the role and mechanisms of SAMHD1 in suppressing innate immunity.


2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 2-3
Author(s):  
J M Allaire ◽  
A Poon ◽  
S M Crowley ◽  
X Han ◽  
M Stahl ◽  
...  

Abstract Background Intestinal epithelial cells (IEC) reside in close contact with the gut microbiota. It is thus important that IEC are hypo-responsive to bacterial products to prevent maladaptive inflammatory responses in the gut, such as those seen in Inflammatory bowel diseases (IBD). This suppression of innate immune signaling in IEC is in part due to their strong expression of Single Ig IL1 related receptor (SIGIRR), a negative regulator of interleukin (IL)-1 and toll-like receptor (TLR) signaling. IL37, a newly recognized anti-inflammatory cytokine has been shown to strongly inhibit innate signaling in cells by binding to, and signaling through SIGIRR, leading to suppression of various forms of inflammation in mice. Few studies have looked at the function of IL-37/SIGIRR in IEC and their potential use to balance inflammatory responses. Notably, while many groups have studied IEC immune response in vitro, using transformed IEC lines, our focus is on primary-derived IEC which more accurately reflect in vivo responses. Aims To characterize IEC intrinsic and species-specific immune responses elicited by bacteria and host products as well as the role of IL37/SIGIRR in regulating this innate signaling. Methods We used organoid to study the innate immune responses of primary IEC derived from human or mouse colon (colonoids). After stimulation with inflammatory stimuli (IL1β, FliC and LPS), qPCR, ELISA, Milliplex Multiplex Assay and Western blot were used to determine modification in signalling pathway and cytokine/chemokine secretion. Results Using colonoids derived from healthy donors, we demonstrated that unlike transformed cell lines or mouse IEC, human IEC respond only to the bacterial product FliC, and not to LPS or IL1β. We further characterized human colonoid innate immune responses and despite significant inter-individual variability upon FliC stimulation, all organoids released several chemokines (IL8, CXCL1, CXCL2, CCL2 and CCL20). We showed for the first time that IL37 attenuated these innate immune responses through inhibition of intracellular signaling pathways (p38 and NFkB). Using colonoids derived from wildtype and Sigirr deficient mice, we found that mice IEC were responsive to IL1b and FliC and that the suppressive effects of IL37 were Sigirr dependent. Conclusions Our results show that human IEC show variability among individuals in the magnitude of their innate immune responses, and these responses differ from those obtained from transformed cells and primary mouse IEC. For the first time, we show that IL37 suppresses IEC innate immune responses, through its ability to signal through Sigirr. Further investigations will assess the ability of IL37 to control inflammation of IEC derived from IBD patients, as a potential therapeutic to promote gut health. Funding Agencies CAG, CIHRMSFHR


2021 ◽  
Vol 17 (7) ◽  
pp. e1009733
Author(s):  
Jiangnan Li ◽  
Jie Song ◽  
Li Kang ◽  
Li Huang ◽  
Shijun Zhou ◽  
...  

Inflammatory factors and type I interferons (IFNs) are key components of host antiviral innate immune responses, which can be released from the pathogen-infected macrophages. African swine fever virus (ASFV) has developed various strategies to evade host antiviral innate immune responses, including alteration of inflammatory responses and IFNs production. However, the molecular mechanism underlying inhibition of inflammatory responses and IFNs production by ASFV-encoded proteins has not been fully understood. Here we report that ASFV infection only induced low levels of IL-1β and type I IFNs in porcine alveolar macrophages (PAMs), even in the presence of strong inducers such as LPS and poly(dA:dT). Through further exploration, we found that several members of the multigene family 360 (MGF360) and MGF505 strongly inhibited IL-1β maturation and IFN-β promoter activation. Among them, pMGF505-7R had the strongest inhibitory effect. To verify the function of pMGF505-7R in vivo, a recombinant ASFV with deletion of the MGF505-7R gene (ASFV-Δ7R) was constructed and assessed. As we expected, ASFV-Δ7R infection induced higher levels of IL-1β and IFN-β compared with its parental ASFV HLJ/18 strain. ASFV infection-induced IL-1β production was then found to be dependent on TLRs/NF-κB signaling pathway and NLRP3 inflammasome. Furthermore, we demonstrated that pMGF505-7R interacted with IKKα in the IKK complex to inhibit NF-κB activation and bound to NLRP3 to inhibit inflammasome formation, leading to decreased IL-1β production. Moreover, we found that pMGF505-7R interacted with and inhibited the nuclear translocation of IRF3 to block type I IFN production. Importantly, the virulence of ASFV-Δ7R is reduced in piglets compared with its parental ASFV HLJ/18 strain, which may due to induction of higher IL-1β and type I IFN production in vivo. Our findings provide a new clue to understand the functions of ASFV-encoded pMGF505-7R and its role in viral infection-induced pathogenesis, which might help design antiviral agents or live attenuated vaccines to control ASF.


2018 ◽  
Vol 115 (16) ◽  
pp. E3798-E3807 ◽  
Author(s):  
Shuliang Chen ◽  
Serena Bonifati ◽  
Zhihua Qin ◽  
Corine St. Gelais ◽  
Karthik M. Kodigepalli ◽  
...  

Sterile alpha motif and HD-domain–containing protein 1 (SAMHD1) blocks replication of retroviruses and certain DNA viruses by reducing the intracellular dNTP pool. SAMHD1 has been suggested to down-regulate IFN and inflammatory responses to viral infections, although the functions and mechanisms of SAMHD1 in modulating innate immunity remain unclear. Here, we show that SAMHD1 suppresses the innate immune responses to viral infections and inflammatory stimuli by inhibiting nuclear factor-κB (NF-κB) activation and type I interferon (IFN-I) induction. Compared with control cells, infection of SAMHD1-silenced human monocytic cells or primary macrophages with Sendai virus (SeV) or HIV-1, or treatment with inflammatory stimuli, induces significantly higher levels of NF-κB activation and IFN-I induction. Exogenous SAMHD1 expression in cells or SAMHD1 reconstitution in knockout cells suppresses NF-κB activation and IFN-I induction by SeV infection or inflammatory stimuli. Mechanistically, SAMHD1 inhibits NF-κB activation by interacting with NF-κB1/2 and reducing phosphorylation of the NF-κB inhibitory protein IκBα. SAMHD1 also interacts with the inhibitor-κB kinase ε (IKKε) and IFN regulatory factor 7 (IRF7), leading to the suppression of the IFN-I induction pathway by reducing IKKε-mediated IRF7 phosphorylation. Interactions of endogenous SAMHD1 with NF-κB and IFN-I pathway proteins were validated in human monocytic cells and primary macrophages. Comparing splenocytes from SAMHD1 knockout and heterozygous mice, we further confirmed SAMHD1-mediated suppression of NF-κB activation, suggesting an evolutionarily conserved property of SAMHD1. Our findings reveal functions of SAMHD1 in down-regulating innate immune responses to viral infections and inflammatory stimuli, highlighting the importance of SAMHD1 in modulating antiviral immunity.


2019 ◽  
Author(s):  
Robert C. M. Knaap ◽  
Raúl Fernández-Delgado ◽  
Tim J. Dalebout ◽  
Nadia Oreshkova ◽  
Peter J. Bredenbeek ◽  
...  

AbstractMiddle East respiratory syndrome coronavirus (MERS-CoV) continues to cause zoonotic infections and serious disease, primarily in the Arabian Peninsula, due to repeated spill-over from dromedary camels and subsequent nosocomial transmission. Approved MERS vaccines for use in animals or humans are not currently available. MERS-CoV replication requires the virus-encoded papain-like protease (PLpro) to cleave multiple sites in the viral replicase polyproteins, thereby releasing functional non-structural proteins. Additionally, PLpro is a deubiquitinating enzyme (DUB) that can remove ubiquitin(-like) moieties from substrates, presumably to counteract host antiviral responses. In previous work, we determined the crystal structure of MERS-CoV PLpro in complex with ubiquitin, facilitating the design of PLpro mutations that impair DUB activity without affecting viral polyprotein cleavage. Here, we introduced these DUB-inactivating mutations into the viral genome and examined their impact on MERS-CoV infection both in cell culture and in a lethal mouse model. Although overall replication of DUB-negative and wild-type (wt) recombinant MERS-CoV was comparable in multiple cell lines, infection with DUB-negative virus markedly increased mRNA levels for interferon (IFN)-β and IFN-stimulated genes. Moreover, compared to a wt virus infection, the survival rate was significantly increased when DUB-negative MERS-CoV was used to infect transgenic mice expressing a human MERS-CoV receptor. Interestingly, DUB-negative and wt MERS-CoV replicated to the same titers in lungs of infected mice, but the DUB-negative virus was cleared faster, likely due to the observed accelerated and better-regulated innate immune responses, in contrast to delayed and subsequently excessive responses in wt virus-infected mice. This study provides the first direct evidence that the DUB activity of a coronaviral protease contributes to innate immune evasion and can profoundly enhance virulence in an animal model. Thus, reduction or removal of the innate immune-suppressive DUB activity of PLpros is a promising strategy for coronavirus attenuation in the context of rational vaccine development.Author SummaryAlthough zoonotic coronaviruses such as Middle East respiratory coronavirus (MERS-CoV) have pandemic potential, therapeutics and vaccines that counteract this public health threat are not currently available. Coronaviruses typically employ multiple strategies to evade the host’s innate immune response, which may enhance clinical disease and/or reduce the efficacy of modified live vaccines. The MERS-CoV-encoded papain-like protease (PLpro) is not only crucial for the expression of functional replicase proteins, but has also been postulated to antagonize ubiquitination-dependent steps during the activation of the innate immune response. Here, we report the generation of engineered MERS-CoVs mutants in which PLpro’s deubiquitinating (DUB) activity was specifically disrupted without affecting virus viability. In this manner, we could demonstrate that the DUB activity of PLpro suppresses the interferon response in MERS-CoV-infected cells. Strikingly, in the lungs of mice infected with DUB-negative MERS-CoV, innate immune responses were induced at an earlier stage of infection than in wt virus-infected mice. This group also showed a clearly increased survival, indicating that the DUB activity is an important MERS-CoV virulence factor. This proof-of-concept study establishes that the engineering of DUB-negative coronaviruses, which elicit a more effective immune response in the host, is a viable strategy for vaccine development.


Sign in / Sign up

Export Citation Format

Share Document