scholarly journals Feasibility Study of a Prostate Cancer FLASH Therapy Treatment With Electrons of High Energy

Author(s):  
Alessio Sarti ◽  
Patrizia De Maria ◽  
Battistoni Giuseppe ◽  
Micol De Simoni ◽  
Cinzia Di Felice ◽  
...  

Abstract Prostate cancer is among the most common cancers in men and one of the leading causes of death worldwide. Different therapies are adopted for its treatment and generally radiotherapy with photons (RT) is the preferred solution in almost all cases. Up to now, in addition to photons, only protons have been implemented as alternative radiotherapy. The use of Very High Energy Electron (VHEE) beams (100-200 MeV) has been suggested in literature but the needed accelerators are more demanding, as far as space and cost are concerned, with respect to standard photon devices, with only limited advantages when compared to protons or other heavy ions. In this contribution we investigate how recent developments in electron beam therapy could reshape the landscape of prostate treatments. The VHEE Treatment Planning System obtained combining an accurate Monte Carlo (MC) simulation with a simple modelling of the FLASH effect (healthy tissues sparing at very high dose rates) is compared with conventional RT. The results demonstrate that FLASH therapy with VHEE beams of 70-130 MeV could represent a valid alternative to standard RT allowing a better sparing of the healthy tissues surrounding the tumour, in the framework of an affordable technological development.

2021 ◽  
Vol 11 ◽  
Author(s):  
Alessio Sarti ◽  
Patrizia De Maria ◽  
Giuseppe Battistoni ◽  
Micol De Simoni ◽  
Cinzia Di Felice ◽  
...  

Different therapies are adopted for the treatment of deep seated tumours in combination or as an alternative to surgical removal or chemotherapy: radiotherapy with photons (RT), particle therapy (PT) with protons or even heavier ions like 12C, are now available in clinical centres. In addition to these irradiation modalities, the use of Very High Energy Electron (VHEE) beams (100–200 MeV) has been suggested in the past, but the diffusion of that technique was delayed due to the needed space and budget, with respect to standard photon devices. These disadvantages were not paired by an increased therapeutic efficacy, at least when comparing to proton or carbon ion beams. In this contribution we investigate how recent developments in electron beam therapy could reshape the treatments of deep seated tumours. In this respect we carefully explored the application of VHEE beams to the prostate cancer, a well-known and studied example of deep seated tumour currently treated with high efficacy both using RT and PT. The VHEE Treatment Planning System was obtained by means of an accurate Monte Carlo (MC) simulation of the electrons interactions with the patient body. A simple model of the FLASH effect (healthy tissues sparing at ultra-high dose rates), has been introduced and the results have been compared with conventional RT. The study demonstrates that VHEE beams, even in absence of a significant FLASH effect and with a reduced energy range (70–130 MeV) with respect to implementations already explored in literature, could be a good alternative to standard RT, even in the framework of technological developments that are nowadays affordable.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4942
Author(s):  
Maria Grazia Ronga ◽  
Marco Cavallone ◽  
Annalisa Patriarca ◽  
Amelia Maia Leite ◽  
Pierre Loap ◽  
...  

The development of innovative approaches that would reduce the sensitivity of healthy tissues to irradiation while maintaining the efficacy of the treatment on the tumor is of crucial importance for the progress of the efficacy of radiotherapy. Recent methodological developments and innovations, such as scanned beams, ultra-high dose rates, and very high-energy electrons, which may be simultaneously available on new accelerators, would allow for possible radiobiological advantages of very short pulses of ultra-high dose rate (FLASH) therapy for radiation therapy to be considered. In particular, very high-energy electron (VHEE) radiotherapy, in the energy range of 100 to 250 MeV, first proposed in the 2000s, would be particularly interesting both from a ballistic and biological point of view for the establishment of this new type of irradiation technique. In this review, we examine and summarize the current knowledge on VHEE radiotherapy and provide a synthesis of the studies that have been published on various experimental and simulation works. We will also consider the potential for VHEE therapy to be translated into clinical contexts.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
K. Abdul Haneefa ◽  
K. K. Shakir ◽  
A. Siddhartha ◽  
T. Siji Cyriac ◽  
M. M. Musthafa ◽  
...  

Dosimetric studies of mixed field photon beam intensity modulated radiation therapy (IMRT) for prostate cancer using pencil beam (PB) and collapsed cone convolution (CCC) algorithms using Oncentra MasterPlan treatment planning system (v. 4.3) are investigated in this study. Three different plans were generated using 6 MV, 15 MV, and mixed beam (both 6 and 15 MV). Fifteen patients with two sets of plans were generated: one by using PB and the other by using CCC for the same planning parameters and constraints except the beam energy. For each patient’s plan of high energy photons, one set of photoneutron measurements using solid state neutron track detector (SSNTD) was taken for this study. Mean percentage of V66 Gy in the rectum is 18.55±2.8, 14.58±2.1, and 16.77±4.7 for 6 MV, 15 MV, and mixed-energy plans, respectively. Mean percentage of V66 Gy in bladder is 16.54±2.1, 17.42±2.1, and 16.94±41.9 for 6 MV, 15 MV, and mixed-energy plans, respectively. Mixed fields neutron contribution at the beam entrance surface is 45.62% less than at 15 MV photon beam. Our result shows that, with negligible neutron contributions, mixed field IMRT has considerable dosimetric advantage.


2018 ◽  
Vol 22 ◽  
pp. 01049 ◽  
Author(s):  
Yonca Yahşi Çelen ◽  
Atilla Evcin

It is aimed to compare the values of conformity index (CI), homogeneity index (HI), monitor unit (MU) of volumetrically adjusted arthritis therapy (VMAT) plans using 10 prostate cancer patients with flattened filter (FF) and without flattening filter (FFF). In the study, treatment plans were prepared using 6 FF and 6 FFF in the Eclipse (ver.13.6) treatment planning system with Varian Trilogy Linear Accelerator. When planning was completed, CI averaged 0.87, HI averaged 0.44 and MU values were found to be 591 ± 26.8, 650 ± 33.06, respectively. When the PTV coverage, CI, HI and MU comparisons were made as a result of planning, there was no significant difference when comparing VMAT plans in FFF and FF energies. When we compare the MU values, the MU increase is seen when the straightening filter is removed. In both energy modes, good homogeneity in PTV was achieved with conventional francitation and close dose rates. No significant advantages and disadvantages of the unfiltered energy mode were observed in the assessment of plan quality in terms of CI, HI.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Luca Labate ◽  
Daniele Palla ◽  
Daniele Panetta ◽  
Federico Avella ◽  
Federica Baffigi ◽  
...  

Abstract Radiotherapy with very high energy electrons has been investigated for a couple of decades as an effective approach to improve dose distribution compared to conventional photon-based radiotherapy, with the recent intriguing potential of high dose-rate irradiation. Its practical application to treatment has been hindered by the lack of hospital-scale accelerators. High-gradient laser-plasma accelerators (LPA) have been proposed as a possible platform, but no experiments so far have explored the feasibility of a clinical use of this concept. We show the results of an experimental study aimed at assessing dose deposition for deep seated tumours using advanced irradiation schemes with an existing LPA source. Measurements show control of localized dose deposition and modulation, suitable to target a volume at depths in the range from 5 to 10 cm with mm resolution. The dose delivered to the target was up to 1.6 Gy, delivered with few hundreds of shots, limited by secondary components of the LPA accelerator. Measurements suggest that therapeutic doses within localized volumes can already be obtained with existing LPA technology, calling for dedicated pre-clinical studies.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
K. Kokurewicz ◽  
E. Brunetti ◽  
G. H. Welsh ◽  
S. M. Wiggins ◽  
M. Boyd ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rachel Delorme ◽  
Thongchai A. M. Masilela ◽  
Camille Etoh ◽  
François Smekens ◽  
Yolanda Prezado

AbstractVery high energy electrons (VHEEs, E > 70 MeV) present promising clinical advantages over conventional beams due to their increased range, improved penumbra and relative insensitivity to tissue heterogeneities. They have recently garnered additional interest in their application to spatially fractionated radiotherapy or ultra-high dose rate (FLASH) therapy. However, the lack of radiobiological data limits their rapid development. This study aims to provide numerical biologically-relevant information by characterizing VHEE beams (100 and 300 MeV) against better-known beams (clinical energy electrons, photons, protons, carbon and neon ions). Their macro- and microdosimetric properties were compared, using the dose-averaged linear energy transfer ($$\overline{{L_{d} }}$$ L d ¯ ) as the macroscopic metric, and the dose-mean lineal energy $$\overline{{y_{d} }}$$ y d ¯ and the dose-weighted lineal energy distribution, yd(y), as microscopic metrics. Finally, the modified microdosimetric kinetic model was used to calculate the respective cell survival curves and the theoretical RBE. From the macrodosimetric point of view, VHEEs presented a potential improved biological efficacy over clinical photon/electron beams due to their increased $$\overline{{L_{d} }}$$ L d ¯ . The microdosimetric data, however, suggests no increased biological efficacy of VHEEs over clinical electron beams, resulting in RBE values of approximately 1, giving confidence to their clinical implementation. This study represents a first step to complement further radiobiological experiments.


1964 ◽  
Vol 82 (1) ◽  
pp. 3-81 ◽  
Author(s):  
Evgenii L. Feinberg ◽  
Dmitrii S. Chernavskii

Sign in / Sign up

Export Citation Format

Share Document