scholarly journals Bioinformatics-Based Study to Investigate Potential Differentially Expressed Genes and miRNAs in Hashimoto’s Thyroiditis

Author(s):  
Li Guoquan ◽  
Du Junwei ◽  
He Qi ◽  
Fu Xinghao ◽  
Ji Feihong ◽  
...  

Abstract BackgroundHashimoto's thyroiditis (HT), also known as chronic lymphocytic thyroiditis, is a common autoimmune disease, which mainly occurs in women. The early manifestation was hyperthyroidism, however, hypothyroidism may occur if HT was not controlled for a long time. Numerous studies have shown that multiple factors, including genetic, environmental, and autoimmune factors, were involved in the pathogenesis of the disease, but the exact mechanisms were not yet clear. The aim of this study was to identify differentially expressed genes (DEGs) by comprehensive analysis and to provide specific insights into HT. MethodsTwo gene expression profiles (GSE6339, GSE138198) about HT were downloaded from the Gene Expression Omnibus (GEO) database. The DEGs were assessed between the HT and normal groups using the GEO2R. The DEGs were then sent to the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The hub genes were discovered using Cytoscape and CytoHubba. Finally, NetworkAnalyst was utilized to create the hub genes' targeted microRNAs (miRNAs). ResultsA total of 62 DEGs were discovered, including 60 up-regulated and 2 down-regulated DEGs. The signaling pathways were mainly engaged in cytokine interaction and cytotoxicity, and the DEGs were mostly enriched in immunological and inflammatory responses. IL2RA, CXCL9, IL10RA, CCL3, CCL4, CCL2, STAT1, CD4, CSF1R, and ITGAX were chosen as hub genes based on the results of the protein-protein interaction (PPI) network and CytoHubba. Five miRNAs, including mir-24-3p, mir-223-3p, mir-155-5p, mir-34a-5p, mir-26b-5p, and mir-6499-3p, were suggested as likely important miRNAs in HT. ConclusionsThese hub genes, pathways and miRNAs contribute to a better understanding of the pathophysiology of HT and offer potential treatment options for HT.

2021 ◽  
Vol 8 ◽  
Author(s):  
Xinsheng Xie ◽  
En ci Wang ◽  
Dandan Xu ◽  
Xiaolong Shu ◽  
Yu fei Zhao ◽  
...  

Objectives: Abdominal aortic aneurysms (AAAs) are associated with high mortality rates. The genes and pathways linked with AAA remain poorly understood. This study aimed to identify key differentially expressed genes (DEGs) linked to the progression of AAA using bioinformatics analysis.Methods: Gene expression profiles of the GSE47472 and GSE57691 datasets were acquired from the Gene Expression Omnibus (GEO) database. These datasets were merged and normalized using the “sva” R package, and DEGs were identified using the limma package in R. The functions of these DEGs were assessed using Cytoscape software. We analyzed the DEGs using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Protein–protein interaction networks were assembled using Cytoscape, and crucial genes were identified using the Cytoscape plugin, molecular complex detection. Data from GSE15729 and GSE24342 were also extracted to verify our findings.Results: We found that 120 genes were differentially expressed in AAA. Genes associated with inflammatory responses and nuclear-transcribed mRNA catabolic process were clustered in two gene modules in AAA. The hub genes of the two modules were IL6, RPL21, and RPL7A. The expression levels of IL6 correlated positively with RPL7A and negatively with RPL21. The expression of RPL21 and RPL7A was downregulated, whereas that of IL6 was upregulated in AAA.Conclusions: The expression of RPL21 or RPL7A combined with IL6 has a diagnostic value for AAA. The novel DEGs and pathways identified herein might provide new insights into the underlying molecular mechanisms of AAA.


2020 ◽  
Author(s):  
Linlin Yang ◽  
Yunxia Cui ◽  
Ting Huang ◽  
Xiao Sun ◽  
Yudong Wang

Abstract Background: Progestin resistance is a critical obstacle for endometrial conservative therapy. Therefore, the studies to acquire a more comprehensive understanding of the mechanisms and specific biomarkers to predict progestin resistance are very important. However, the pivotal roles of essential molecules of progestin resistance are still unexplored. Methods: We downloaded GSE121367 with gene expression profiles of medroxyprogesterone acetate (MPA) resistant and sensitive cell lines from the GEO database. The “limma” R language package was applied to identify differentially expressed genes (DEGs). Gene ontology and pathway enrichment analysis was performed through the database of DAVID. Meanwhile, we conducted GSEA analysis to identify pathway enrichments. Protein–protein interaction construction of top genes was conducted to screen hub genes by STRING and visualized in Cytoscape. A high connectivity degree of hub genes were picked out to perform the differential expression, methylation validation and overall survival analysis in the Gene Expression Profiling Interactive Analysis database, Human Protein Atlas database and Kaplan–Meier plotter online tool, respectively. In addition, microRNAs and upstream transcription factors of hub genes were predicted by miRTarBase and Network Analyst database. Results: A total number of 3282 differentially expressed genes were identified. Functional enrichment analysis demonstrated that these genes were mostly enriched in negative regulation of DNA binding, chronic inflammatory response and cell adhesion molecules pathway. We screened out ten hub genes including CDH1, JAG1, PTGES, EPCAM, CNTNAP2, TBX1, MSX1, KRT19, OAS1 and DAB2 among different groups. The genomic alteration rates of hub genes were low based on the current uterine corpus endometrial carcinoma sample sets. Their relevant microRNA and transcription factor were detected and has-miR-335-5p, has-miR-124-3p, MAZ and TFDP1 were the most prominent. The methylation status of CDH1, JAG1, EPCAM and MSX1 were decreased, corresponding to their high protein expression in endometrial cancers, which also indicated better overall survival. The homeobox protein of MSX1 showed significantly tissue specificity. Conclusions: Our study identified ten hub genes associated with progestin resistance of endometrial cancer and screened out the gene of MSX1 which promised to be the specific indicator. This would shed new light on the underlying biological marker to overcome the progestin resistance of endometrial cancer. Keywords : Bioinformatic analysis, Progestin resistance, Endometrial carcinoma, MSX1


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1037.2-1038
Author(s):  
X. Sun ◽  
S. X. Zhang ◽  
S. Song ◽  
T. Kong ◽  
C. Zheng ◽  
...  

Background:Psoriasis is an immune-mediated, genetic disease manifesting in the skin or joints or both, and also has a strong genetic predisposition and autoimmune pathogenic traits1. The hallmark of psoriasis is sustained inflammation that leads to uncontrolled keratinocyte proliferation and dysfunctional differentiation. And it’s also a chronic relapsing disease, which often necessitates a long-term therapy2.Objectives:To investigate the molecular mechanisms of psoriasis and find the potential gene targets for diagnosis and treating psoriasis.Methods:Total 334 gene expression data of patients with psoriasis research (GSE13355 GSE14905 and GSE30999) were obtained from the Gene Expression Omnibus database. After data preprocessing and screening of differentially expressed genes (DEGs) by R software. Online toll Metascape3 was used to analyze Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs. Interactions of proteins encoded by DEGs were discovered by Protein-protein interaction network (PPI) using STRING online software. Cytoscape software was utilized to visualize PPI and the degree of each DEGs was obtained by analyzing the topological structure of the PPI network.Results:A total of 611 DEGs were found to be differentially expressed in psoriasis. GO analysis revealed that up-regulated DEGs were mostly associated with defense and response to external stimulus while down-regulated DEGs were mostly associated with metabolism and synthesis of lipids. KEGG enrichment analysis suggested they were mainly enriched in IL-17 signaling, Toll-like receptor signaling and PPAR signaling pathways, Cytokine-cytokine receptor interaction and lipid metabolism. In addition, top 9 key genes (CXCL10, OASL, IFIT1, IFIT3, RSAD2, MX1, OAS1, IFI44 and OAS2) were identified through Cytoscape.Conclusion:DEGs of psoriasis may play an essential role in disease development and may be potential pathogeneses of psoriasis.References:[1]Boehncke WH, Schon MP. Psoriasis. Lancet 2015;386(9997):983-94. doi: 10.1016/S0140-6736(14)61909-7 [published Online First: 2015/05/31].[2]Zhang YJ, Sun YZ, Gao XH, et al. Integrated bioinformatic analysis of differentially expressed genes and signaling pathways in plaque psoriasis. Mol Med Rep 2019;20(1):225-35. doi: 10.3892/mmr.2019.10241 [published Online First: 2019/05/23].[3]Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019;10(1):1523. doi: 10.1038/s41467-019-09234-6 [published Online First: 2019/04/05].Acknowledgements:This project was supported by National Science Foundation of China (82001740), Open Fund from the Key Laboratory of Cellular Physiology (Shanxi Medical University) (KLCP2019) and Innovation Plan for Postgraduate Education in Shanxi Province (2020BY078).Disclosure of Interests:None declared


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Baojie Wu ◽  
Shuyi Xi

Abstract Background This study aimed to explore and identify key genes and signaling pathways that contribute to the progression of cervical cancer to improve prognosis. Methods Three gene expression profiles (GSE63514, GSE64217 and GSE138080) were screened and downloaded from the Gene Expression Omnibus database (GEO). Differentially expressed genes (DEGs) were screened using the GEO2R and Venn diagram tools. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Gene set enrichment analysis (GSEA) was performed to analyze the three gene expression profiles. Moreover, a protein–protein interaction (PPI) network of the DEGs was constructed, and functional enrichment analysis was performed. On this basis, hub genes from critical PPI subnetworks were explored with Cytoscape software. The expression of these genes in tumors was verified, and survival analysis of potential prognostic genes from critical subnetworks was conducted. Functional annotation, multiple gene comparison and dimensionality reduction in candidate genes indicated the clinical significance of potential targets. Results A total of 476 DEGs were screened: 253 upregulated genes and 223 downregulated genes. DEGs were enriched in 22 biological processes, 16 cellular components and 9 molecular functions in precancerous lesions and cervical cancer. DEGs were mainly enriched in 10 KEGG pathways. Through intersection analysis and data mining, 3 key KEGG pathways and related core genes were revealed by GSEA. Moreover, a PPI network of 476 DEGs was constructed, hub genes from 12 critical subnetworks were explored, and a total of 14 potential molecular targets were obtained. Conclusions These findings promote the understanding of the molecular mechanism of and clinically related molecular targets for cervical cancer.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Cheng Zhang ◽  
Bingye Zhang ◽  
Di Meng ◽  
Chunlin Ge

Abstract Background The incidence of cholangiocarcinoma (CCA) has risen in recent years, and it has become a significant health burden worldwide. However, the mechanisms underlying tumorigenesis and progression of this disease remain largely unknown. An increasing number of studies have demonstrated crucial biological functions of epigenetic modifications, especially DNA methylation, in CCA. The present study aimed to identify and analyze methylation-regulated differentially expressed genes (MeDEGs) involved in CCA tumorigenesis and progression by bioinformatics analysis. Methods The gene expression profiling dataset (GSE119336) and gene methylation profiling dataset (GSE38860) were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were identified using the limma packages of R and GEO2R, respectively. The MeDEGs were obtained by overlapping the DEGs and DMGs. Functional enrichment analyses of these genes were then carried out. Protein–protein interaction (PPI) networks were constructed using STRING and visualized in Cytoscape to determine hub genes. Finally, the results were verified based on The Cancer Genome Atlas (TCGA) database. Results We identified 98 hypermethylated, downregulated genes and 93 hypomethylated, upregulated genes after overlapping the DEGs and DMGs. These genes were mainly enriched in the biological processes of the cell cycle, nuclear division, xenobiotic metabolism, drug catabolism, and negative regulation of proteolysis. The top nine hub genes of the PPI network were F2, AHSG, RRM2, AURKB, CCNA2, TOP2A, BIRC5, PLK1, and ASPM. Moreover, the expression and methylation status of the hub genes were significantly altered in TCGA. Conclusions Our study identified novel methylation-regulated differentially expressed genes (MeDEGs) and explored their related pathways and functions in CCA, which may provide novel insights into a further understanding of methylation-mediated regulatory mechanisms in CCA.


2020 ◽  
Author(s):  
Wei Han ◽  
Guo-liang Shen

Abstract Background: Skin Cutaneous Melanoma (SKCM) is known as an aggressive malignant cancer, which could be directly derived from melanocytic nevi. However, the molecular mechanisms underlying malignant transformation of melanocytes and melanoma tumor progression still remain unclear. Increasing researches showed significant roles of epigenetic modifications, especially DNA methylation, in melanoma. This study focused on identification and analysis of methylation-regulated differentially expressed genes (MeDEGs) between melanocytic nevus and malignant melanoma in genome-wide profiles. Methods: The gene expression profiling datasets (GSE3189 and GSE114445) and gene methylation profiling datasets (GSE86355 and GSE120878) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were identified via GEO2R. MeDEGs were obtained by integrating the DEGs and DMGs. Then, functional enrichment analysis of MeDEGs were performed. STRING and Cytoscape were used to describe protein-protein interaction(PPI) network. Furthermore, survival analysis was implemented to select the prognostic hub genes. Finally, we conducted gene set enrichment analysis (GSEA) of hub genes. Results: We identified 237 hypomethylated, upregulated genes and 182 hypermethylated, downregulated genes. Hypomethylation-upregulated genes were enriched in biological processes of the oxidation-reduction process, cell proliferation, cell division, phosphorylation, extracellular matrix disassembly and protein sumoylation. Pathway enrichment showed selenocompound metabolism, small cell lung cancer and lysosome. Hypermethylation-downregulated genes were enriched in biological processes of positive regulation of transcription from RNA polymerase II promoter, cell adhesion, cell proliferation, positive regulation of transcription, DNA-templated and angiogenesis. The most significantly enriched pathways involved the transcriptional misregulation in cancer, circadian rhythm, tight junction, protein digestion and absorption and Hippo signaling pathway. After PPI establishment and survival analysis, seven prognostic hub genes were CKS2, DTL, KIF2C, KPNA2, MYBL2, TPX2 and FBL. Moreover, the most involved hallmarks obtained by GSEA were E2F targets, G2M checkpoint and mitotic spindle. Conclusions: Our study identified potential aberrantly methylated-differentially expressed genes participating in the process of malignant transformation from nevus to melanoma tissues based on comprehensive genomic profiles. Transcription profiles of CKS2, DTL, KIF2C, KPNA2, MYBL2, TPX2 and FBL provided clues of aberrantly methylation-based biomarkers, which might improve the development of precise medicine.


2021 ◽  
Author(s):  
Baoliang Zhang ◽  
Lei Yuan ◽  
Guanghui Chen ◽  
Xi Chen ◽  
Xiaoxi Yang ◽  
...  

Abstract Background: Obese individuals predispose to ossification of ligamentum flavum (OLF), whereas the underlying connections between obesity phenotype and OLF pathomechanism are not fully understood, especially during early life. This study aimed to explore obesity-associated genes and their functional signatures in OLF. Methods: Gene microarray expression data related to OLF were downloaded from the GSE106253 dataset in the Gene Expression Omnibus (GEO) database. The potential obesity-related differentially expressed genes (ORDEGs) in OLF were screened. Then, gene-ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were applied for these genes. Furthermore, protein-protein interactions (PPI) were used to identify hub ORDEGs, and Metascape was used to further verify the key signaling pathways and immune-related function signatures of hub ORDEGs. Finally, correlation analysis of hub ORDEGs and identified OLF-related infiltrating immune cells (OIICs) was constructed to understand the possible mechanical link among obesity, immune response and OLF. Results: OLF-related differentially expressed genes and 2051 obesity-related genes from four databases were intersected to obtain 99 ORDEGs, including 54 upregulated and 55 downregulated genes. GO and KEGG analysis revealed that these genes were mainly involved in metabolism, inflammation and immune-related biological functions and pathways. A PPI network was established to determine 14 hub genes (AKT1, CCL2, CCL5, CXCL2, ICAM1, IL10, MYC, PTGS2, SAA1, SOCS1, SOCS3, STAT3, TNFRSF1B and VEGFA). The co-expression network demonstrated that this module was associated with cellular response to biotic stimulus, regulation of inflammatory response, regulation of tyrosine phosphorylation of STAT protein. Furthermore, Metascape functional annotations showed that hub genes were mainly involved in receptor signaling pathway via JAK-STAT, response to TNF and regulation of defense response, and their representative enriched pathways were TNF, adipocytokine and JAK-STAT signaling pathways. Subgroup analysis indicated that T cell activation might be potential immune function processes involved, and correlation analysis revealed that cDCs, memory B-cells and preadipocytes were highly correlated infiltrating immune cells. Conclusions: Our study deciphered individualized obesity-associated gene signature for the first time, which may facilitate exploring the underlying cellular and molecular pathogenesis and novel therapeutic targets of obesity-related early-onset OLF.


2020 ◽  
Author(s):  
Cheng Zhang ◽  
Di Meng ◽  
Songjie Chao ◽  
Chunlin Ge

Abstract BackgroundAbnormal hypomethylation of oncogenes and hypermethylation of tumor suppressor genes play important roles in human tumorigenesis and cancer progression, including those of rectal cancer (RC). However, conjoint analysis of RC involving both gene expression and methylation profiling datasets remains rare. This study aimed to identify methylation-regulated differentially expressed genes (MeDEGs) and to evaluate their prognostic value in RC through bioinformatics analysis.MethodsGene expression (GSE20842 and GSE68204) and gene methylation (GSE75546) profiling datasets were obtained from the Gene Expression Omnibus database. GEO2R was adopted to identify differentially expressed genes (DEGs) and differentially methylated genes (DMGs). MeDEGs were obtained by overlapping the DEGs and DMGs and then subjected to protein–protein interaction (PPI) network analysis using STRING. Modules and hub genes within the network were identified using MCODE and CytoHubba, respectively. Prognostic MeDEGs were selected by univariate Cox regression. Finally, our findings were validated based on The Cancer Genome Atlas (TCGA) database.ResultsIn total, 243 upregulated-hypomethylated and 51 downregulated-hypermethylated genes were identified as MeDEGs. A PPI network of MeDEGs was constructed with 290 nodes and 578 edges. Three modules and three hub genes—COL3A1, FPR1, and PLK1—within the network were identified. Three MeDEGs—NFE2, COMP, and LAMA1—were found to be survival-related. Furthermore, the expression and methylation status of two hub genes (excluding FPR1) and the three prognostic MeDEGs were also significantly altered in TCGA and were consistent with our findings.ConclusionsWe identified novel MeDEGs and explored their relationship with survival in RC. Our methodology may provide an effective bioinformatics basis for further understanding of the methylation-mediated regulatory mechanisms in RC.


2020 ◽  
Author(s):  
Kainan Lin ◽  
Zhenyan Pan ◽  
Renke He ◽  
Hanchu Wang ◽  
Kai Zhou ◽  
...  

Abstract Purpose: Endometriosis was a common gynecological disease, however, the specific mechanism and the key molecules of endometriosis remained uncertain. This study aimed to single out key genes associated with poor prognosis, and further uncover underlying mechanisms.Methods: Data regarding mRNA expression profiles used in this study were retrieved from the Gene Expression Omnibus (GEO) database, a total of three mRNA expression profiles were included for subsequent analysis (GSE31515, GSE58178 and GSE120103). Then, we conducted Gene Ontology analysis (GO analysis), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and protein-protein interaction (PPI) analysis by the software R.Results: A total of 304 differentially expressed genes (DEGs) between endometriosis tissues and normal endometrium tissues were identified in integrated analysis, including 185 up-regulated genes and 119 down-regulated genes. GO analysis reveals that the DEGs of endometriosis were closely associated with molecular origin of bacteria. KEGG pathway enrichment analysis indicates that the DEGs were mainly involved in AGE-RAGE signaling pathway in diabetic complications. In addition, PPI of these DEGs was visualized by Cytoscape platform with utilization of Search Tool for the Retrieval of Interacting Genes (STRING). PPI analysis identifies 10 potential DEGs-related protein targets, including CCND1, IL6, CCL2, COL1A2, PTGS2, VCAM1, COL3A1, ELN, SERPINE1, HSP90B1. Conclusion: In conclusion, the present study reveals that bacterial contamination, defect of female reproductive system development, retrograde menstruation and the AGE-RAGE signaling pathway may be involved in the development of endometriosis In addition, these identified DEGs may be of clinical significance for the diagnosis and treatment of the endometriosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Houxi Xu ◽  
Yuzhu Ma ◽  
Jinzhi Zhang ◽  
Jialin Gu ◽  
Xinyue Jing ◽  
...  

Colorectal cancer, a malignant neoplasm that occurs in the colorectal mucosa, is one of the most common types of gastrointestinal cancer. Colorectal cancer has been studied extensively, but the molecular mechanisms of this malignancy have not been characterized. This study identified and verified core genes associated with colorectal cancer using integrated bioinformatics analysis. Three gene expression profiles (GSE15781, GSE110223, and GSE110224) were downloaded from the Gene Expression Omnibus (GEO) databases. A total of 87 common differentially expressed genes (DEGs) among GSE15781, GSE110223, and GSE110224 were identified, including 19 upregulated genes and 68 downregulated genes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed for common DEGs using clusterProfiler. These common DEGs were significantly involved in cancer-associated functions and signaling pathways. Then, we constructed protein-protein interaction networks of these common DEGs using Cytoscape software, which resulted in the identification of the following 10 core genes: SST, PYY, CXCL1, CXCL8, CXCL3, ZG16, AQP8, CLCA4, MS4A12, and GUCA2A. Analysis using qRT-PCR has shown that SST, CXCL8, and MS4A12 were significant differentially expressed between colorectal cancer tissues and normal colorectal tissues (P<0.05). Gene Expression Profiling Interactive Analysis (GEPIA) overall survival (OS) has shown that low expressions of AQP8, ZG16, CXCL3, and CXCL8 may predict poor survival outcome in colorectal cancer. In conclusion, the core genes identified in this study contributed to the understanding of the molecular mechanisms involved in colorectal cancer development and may be targets for early diagnosis, prevention, and treatment of colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document