scholarly journals In Vitro Effects of Bisphenol F on Antioxidant System Indicators in the Isolated Hepatocytes of Rainbow Trout (Oncorhyncus mykiss)

Author(s):  
Handan Aykut ◽  
Burak Kaptaner

Abstract Bisphenol F (BPF) has been used frequently in the plastics industry and the production of daily consumer products as an alternative to bisphenol A (BPA). It was aimed herein to determine the cytotoxic effects of BPF on hepatocytes isolated from the liver of rainbow trout (Oncorhyncus mykiss) using lactate dehydrogenase (LDH) assay and antioxidant defence system indicators. The cultured hepatocytes were exposed to seven concentrations (0, 15.63, 31.25, 62.50, 125, 250, and 500 µM) of BPF for 24 h. According to the LDH assay, the percentage of cytotoxicity was increased dose dependently in the cells. The malondialdehyde content, which is indicative of lipid peroxidation, was increased significantly at BPF concentrations between 15.63 and 250 µM, whereas it remained unchanged with a concentration of 500 µM. The activities of superoxide dismutase were increased, while those of catalase were decreased with all of the BPF concentrations. Elevated levels of reduced glutathione content were determined with BPF concentrations between 15.63 and 250 µM, but decreased significantly with a concentration of 500 µM. Significant increases in the activities of the glutathione peroxidase were found in hepatocytes treated with BPF at concentrations of 31.25 to 500 µM. GST activity was only significantly increased with a BPF concentration of 250 µM. The results showed that the toxic mechanism of BPF was mainly based on cell membrane damage and oxidative stress, which have an influence on antioxidant defences. Therefore, BPF was reconsidered as a safe alternative instead of BPA in the manufacturing of industrial or daily products.

2021 ◽  
Author(s):  
Burak Kaptaner ◽  
Can Yılmaz ◽  
Handan Aykut ◽  
Emine Doğan ◽  
Ceylan Fidan ◽  
...  

Abstract Background: Bisphenol S (BPS) is a chemical compound that is utilized in the plastic industry as an alternative to bisphenol A (BPA). The toxic effects of BPS in fish is less known and limited. Therefore, in the present study, it was aimed to investigate the influence of BPS on rainbow trout (Oncorhyncus mykiss) hepatocytes in vitro.Methods and Results: For this purpose, the hepatocytes of the fish were isolated, and then the cultured cells were treated with increasing concentrations of BPS (0, 15.63, 31.25, 62.50, 125, 250, and 500 µM) for 24 h. The cytotoxic impact of BPS was determined in the culture media using lactate dehydrogenase assay and then, the antioxidant defence indicators were assayed. The results showed that concentration-dependent increases were observed in the percentage of cytotoxicity. The superoxide dismutase activity was reduced, while the catalase and glutathione peroxidase activity was elevated with all of the BPS concentrations. The glutathione S-transferase (GST) activity was significantly increased with a BPS concentration of 31.25 µM or higher, while GST theta 1-1 activity was decreased with the same concentrations of BPS. The reduced glutathione content was decreased significantly with a BPS concentration of 31.25 µM or higher, and the malondialdehyde content increased with BPS concentrations of 125, 250, and 500 µM.Conclusions: The findings determined herein suggested that BPS causes cytotoxicity in fish hepatocytes and could lead to oxidative stress, resulting hepatotoxicity in fish. Thus, the utilization of BPS instead of BPA as safe alternative in industry should be re-evaluated in the future for environmental health.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 314
Author(s):  
Sophie Fouyet ◽  
Elodie Olivier ◽  
Pascale Leproux ◽  
Mélody Dutot ◽  
Patrice Rat

Background: Bisphenol A (BPA), a reprotoxic and endocrine-disrupting chemical, has been substituted by alternative bisphenols such as bisphenol F (BPF) and bisphenol S (BPS) in the plastic industry. Despite their detection in placenta and amniotic fluids, the effects of bisphenols on human placental cells have not been characterized. Our objective was to explore in vitro and to compare the toxicity of BPA to its substitutes BPF and BPS to highlight their potential risks for placenta and then pregnancy. Methods: Human placenta cells (JEG-Tox cells) were incubated with BPA, BPF, and BPS for 72 h. Cell viability, cell death, and degenerative P2X7 receptor and caspases activation, and chromatin condensation were assessed using microplate cytometry and fluorescence microscopy. Results: Incubation with BPA, BPF, or BPS was associated with P2X7 receptor activation and chromatin condensation. BPA and BPF induced more caspase-1, caspase-9, and caspase-3 activation than BPS. Only BPF enhanced caspase-8 activity. Conclusions: BPA, BPF, and BPS are all toxic to human placental cells, with the P2X7 receptor being a common key element. BPA substitution by BPF and BPS does not appear to be a safe alternative for human health, particularly for pregnant women and their fetuses.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 253
Author(s):  
Anna Maria Fresegna ◽  
Cinzia Lucia Ursini ◽  
Aureliano Ciervo ◽  
Raffaele Maiello ◽  
Stefano Casciardi ◽  
...  

Titanium dioxide nanoparticles (TiO2NPs) are increasingly used in consumer products, industrial and medical applications, raising concerns on their potential toxicity. The available in vitro and in vivo studies on these NPs show controversial results. Crystalline structure is the physicochemical characteristic that seems to influence mainly TiO2NPs toxicity, so its effect needs to be further studied. We aimed to study whether and how crystalline form influences potential cyto-genotoxic and inflammatory effects induced by two commercial TiO2NPs (TiO2-A, mainly anatase; TiO2-B, mainly rutile) in human alveolar A549 and bronchial BEAS-2B cells exposed to 1–40 µg/mL. Cell viability (WST-1), membrane damage (LDH release), IL-6, IL-8 and TNF-α release (ELISA) and direct/oxidative DNA damage (fpg-comet assay) were evaluated. Physicochemical characterization included analysis of crystalline form (TEM and XRD), specific surface area (BET), agglomeration (DLS) and Z-potential (ELS). Our results show that TiO2-A NPs induce in BEAS-2B cytotoxicity and a slight inflammation and in A549 slight oxidative effects, whereas TiO2-B NPs induce genotoxic/oxidative effects in both cell lines, revealing different toxicity mechanisms for the two tested NPs. In conclusion, our study confirms the influence of crystalline form on cellular response, also demonstrating the suitability of our in vitro model to screen early TiO2NPs effects.


2020 ◽  
Vol 51 (4) ◽  
pp. 1038-1047
Author(s):  
Mawia & et al.

This study had as principal objective identification of osmotic-tolerant potato genotypes by using "in vitro" tissue culture and sorbitol as a stimulating agent, to induce water stress, which was added to the  culture nutritive medium in different concentration (0,50, 110, 220, 330 and 440 mM).  The starting point was represented by plantlets culture collection, belonging to eleven potato genotypes: Barcelona, Nectar, Alison, Jelly, Malice, Nazca, Toronto, Farida, Fabulla, Colomba and Spunta. Plantlets were multiplied between two internodes to obtain microcuttings (in sterile condition), which were inoculated on medium. Sorbitol-induced osmotic stress caused a significant reduction in the ascorbic acid, while the concentration of proline, H2O2 and solutes leakage increased compared with the control. Increased the proline content prevented lipid peroxidation, which played a pivotal role in the maintenance of membrane integrity under osmotic stress conditions. The extent of the cytoplasmic membrane damage depends on osmotic stress severity and the genotypic variation in the maintenance of membranes stability was highly associated with the ability of producing more amounts of osmoprotectants (proline) and the non-enzymic antioxidant ascorbic acid in response to osmotic stress level. The results showed that the genotypes Jelly, Nectar, Allison, Toronto, and Colomba are classified as highly osmotic stress tolerant genotypes, while the genotypes Nazca and Farida are classified as osmotic stress susceptible ones.


Author(s):  
Michel Haagdorens ◽  
Elle Edin ◽  
Per Fagerholm ◽  
Marc Groleau ◽  
Zvi Shtein ◽  
...  

Abstract Purpose To determine feasibility of plant-derived recombinant human collagen type I (RHCI) for use in corneal regenerative implants Methods RHCI was crosslinked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to form hydrogels. Application of shear force to liquid crystalline RHCI aligned the collagen fibrils. Both aligned and random hydrogels were evaluated for mechanical and optical properties, as well as in vitro biocompatibility. Further evaluation was performed in vivo by subcutaneous implantation in rats and corneal implantation in Göttingen minipigs. Results Spontaneous crosslinking of randomly aligned RHCI (rRHCI) formed robust, transparent hydrogels that were sufficient for implantation. Aligning the RHCI (aRHCI) resulted in thicker collagen fibrils forming an opaque hydrogel with insufficient transverse mechanical strength for surgical manipulation. rRHCI showed minimal inflammation when implanted subcutaneously in rats. The corneal implants in minipigs showed that rRHCI hydrogels promoted regeneration of corneal epithelium, stroma, and nerves; some myofibroblasts were seen in the regenerated neo-corneas. Conclusion Plant-derived RHCI was used to fabricate a hydrogel that is transparent, mechanically stable, and biocompatible when grafted as corneal implants in minipigs. Plant-derived collagen is determined to be a safe alternative to allografts, animal collagens, or yeast-derived recombinant human collagen for tissue engineering applications. The main advantage is that unlike donor corneas or yeast-produced collagen, the RHCI supply is potentially unlimited due to the high yields of this production method. Lay Summary A severe shortage of human-donor corneas for transplantation has led scientists to develop synthetic alternatives. Here, recombinant human collagen type I made of tobacco plants through genetic engineering was tested for use in making corneal implants. We made strong, transparent hydrogels that were tested by implanting subcutaneously in rats and in the corneas of minipigs. We showed that the plant collagen was biocompatible and was able to stably regenerate the corneas of minipigs comparable to yeast-produced recombinant collagen that we previously tested in clinical trials. The advantage of the plant collagen is that the supply is potentially limitless.


2014 ◽  
Vol 17 (3) ◽  
pp. 453-458 ◽  
Author(s):  
J. Małaczewska ◽  
A. K. Siwicki ◽  
R. Wójcik ◽  
W. a. Turski ◽  
E. Kaczorek

Abstract Kynurenic acid (KYNA), an endogenous neuroprotectant formed along the kynurenine pathway of tryptophan degradation, is a selective ligand of the GPR35 receptor, which can be found on the surface of various populations of human immune cells. In infections and inflammations, KYNA produces an anti-inflammatory effect through this receptor, by depressing the synthesis of reactive oxygen species and pro-inflammatory cytokines. However, it is still unrecognized whether receptors for kynurenic acid are also localized on immune cells of poikilothermic animals, or whether KYNA is able to affect these cells. The objective of this study has been to determine the effect of different concentrations of kynurenic acid (12.5 μM to 10 mM) on the viability and mitogenic response of lymphocytes and on the activity of phagocytic cells isolated from blood and the spleen of rainbow trout. The results imply low toxicity of kynurenic acid towards fish immune cells, and the proliferative effect observed at the two lowest concentrations of KYNA (12.5 μM and 25 μM) seems indicative of endogenous kynurenic acid being capable of activating fish lymphocytes. Non-toxic, micromole concentrations of KYNA, however, had no influence on the mitogenic response of lymphocytes nor on the activity of phagocytes in rainbow trout under in vitro conditions. There is some likelihood that such an effect could be observed at lower, nanomole concentrations of KYNA.


2006 ◽  
Vol 40 (15) ◽  
pp. 4653-4658 ◽  
Author(s):  
Heather M. Stapleton ◽  
Brian Brazil ◽  
R. David Holbrook ◽  
Carys L. Mitchelmore ◽  
Rae Benedict ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document